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License agreement

LibLip is distributed under GNU LESSER GENERAL PUBLIC LICENSE.
The terms of the license are provided in the file ”copying” in the root direc-
tory of this distribution.

You can also obtain the GNU License Agreement from
http://www.gnu.org/licenses/licenses.html
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Chapter 1

Introduction

This manual describes the programming library LibLip, which implements
a method of reliable multivariate interpolation of scattered data. The un-
derlying interpolation method assumes that the data are generated by a
continuous function f (Lipschitz continuous). Given information about the
Lipschitz constant, or its estimate, the interpolant is the best possible ap-
proximation to the unknown function f in the worst case scenario, also called
an optimal interpolant. Thus LibLip delivers reliable approximation.

The Lipschitz interpolant possesses a number of desirable features, such
as continuous dependence on the data, preservation of Lipschitz properties
and of the range of the data, uniform approximation and best error bounds.
On the practical side, construction and evaluation of the interpolant is com-
putationally stable. There is no accumulation of errors with the size of the
data set and dimension.

In addition to the Lipschitz constant, the user can provide information
about other properties of f , such as monotonicity with respect to any subset
of variables, upper and lower bounds (not necessarily constant bounds). If the
data are given with errors, then it can be smoothened to satisfy the required
properties. The Lipschitz constant, if unknown, can be estimated from the
data using sample splitting and cross-validation techniques. The library also
provides methods for approximation of locally Lipschitz functions.

There are two alternative ways to compute the interpolant: fast and
explicit. The fast method involves a preprocessing step after which the speed
of evaluation is proportional to the logarithm of the size of the data set. It
is useful for up to 4 variables, and large data sets, and only works with the
simplicial distance (see later). For more variables, the preprocessing step
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6 CHAPTER 1. INTRODUCTION

becomes too expensive, and limited RAM may prevent efficient storage and
use of the data structures.

The second alternative is to use the explicit evaluation method, which
does not require any preprocessing. We recommend this method for most
applications, as it provides more flexibility with smoothing and incorporating
other properties of f .

The implemented interpolation method is highly competitive to the al-
ternative approaches in terms of efficiency and accuracy, and works irrespec-
tively of the dimension or distribution of data points.

Chapter 2 describes the scattered data interpolation problem and the ba-
sics of the theory behind Lipschitz interpolation method. Section 2.3 presents
distinctive features of Lipschitz interpolant, and lists several types of inter-
polation/approximation problems that can be solved using LibLip. The de-
scription of the programming library LibLip is given in Chapter 3. Examples
of its usage are provided in Chapter 4. Section 4.5 analyses the performance
of the algorithms, and their applicability.



Chapter 2

Interpolation problem

Throughout this manual d will denote the dimensionality of the space, and
N will denote the size of the data set. We are given a data set representing
the values of an unknown function f

x1 x2 x3 x4 y
x1

1 x1
2 x1

3 x1
4 y1

x2
1 x2

2 x2
3 x2

4 y2

x3
1 x3

2 x3
3 x3

4 y3

...
xN

1 xN
2 xN

3 xN
4 yN

There is no special structure in the data set, i.e., the data are scattered.
We assume that the data set was generated by an unknown function f which
satisfies Lipschitz condition with the Lipschitz constant M :

|f(x)− f(z)| ≤ Md(x, z),

for all x and z, where d(x, z) is a distance function. We look for an interpolant
g ≈ f , such that

g(xk) = yk, k = 1, . . . , N,

which provides the best uniform approximation to f in the worst case sce-
nario, i.e., g minimizes the maximal possible error at any x

max
f

max
x∈X

|f(x)− g(x)|.

Besides theoretical guarantees on the accuracy of approximation, we look
for a number of practical features.
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8 CHAPTER 2. INTERPOLATION PROBLEM

- Efficient construction of the interpolant: we would like the algorithm
to be numerically stable and fast. However we can sacrifice the speed
of construction in favor of a faster evaluation algorithm.

- Efficient evaluation of the interpolant: ideally we would like the algo-
rithm to perform a very limited number of operations, of order of the
logarithm of the number of data points N , as this number can be very
large.

- Generality: we would like to have the same generic algorithm for any
dimension d > 1.

- Local interpolation scheme: Ideally we would like the interpolant g(x)
to depend only on a few data values closest to x and distributed all
around x.

- Additional properties: We would like to incorporate other information
about f(x), such as monotonicity or upper and lower bounds.

The interpolation methods implemented in LibLip possesses the features
mentioned above. In addition it possesses many other useful features, such
as preservation of the Lipschitz properties of f and continuous dependence
on the data.

There exist many interpolation schemata that provide O(h2), O(h4), etc.
order of accuracy, where h is the distance from x to its neighbors from the
data set. One should always keep in mind that big-O notation involves a
factor depending on the maximum value of the second or higher derivatives
of the function f , which are unknown to us, and which in principle can
be infinitely large. Therefore a high order of accuracy of the interpolation
scheme does not guarantee small approximation error. In fact, the errors can
be infinitely large, regardless how smooth f is.

2.1 Lipschitz interpolation

Lipschitz condition is easy to interpret in terms of the problem in hand. It
is simply the upper bound on the rate of change of function f . No differen-
tiability of f is required.

Our goal is to find an interpolant g which approximates f well at the
points x distinct from the data, given that f is Lipschitz. We are interested



2.2. CONSTRUCTION OF THE INTERPOLANT 9

in reliable approximation of f , which means that we want to obtain a good
approximation regardless of how inconvenient f is, even in the worst case
scenario. That is, we solve the following problem.

Find the best interpolating function g : Rd → R,

g = arg inf{ max
f∈Lip(M)

||f − g||C(X), } (2.1)

such that
g(xk) = f(xk) = yk, k = 1, . . . , N.

Lip(M) denotes the class of functions whose Lipschitz constant is smaller or
equal to M .

The method used in LibLip relies on building tight upper and lower
approximations to f , denoted by Hupper and H lower

Hupper(x) = min
k

(yk + Md(x, xk)),

H lower(x) = max
k

(yk −Md(x, xk)). (2.2)

Let

g(x) =
1

2
(H lower(x) + Hupper(x)),∀x ∈ X.

Then g is the solution to the Interpolation Problem (2.1) over the set of
all continuous functions X → R that interpolate the data, i.e.,

g = arg min
h

max
f∈Lip(M)

||f − h||C(X),

and the best error bound is

max
f∈Lip(M)

||f − g||C(X) = M max
x∈X

min
k=1,...,N

d(x, xk).

2.2 Construction of the interpolant

Equations (2.2) provide the way to evaluate the interpolant g(x) at any x.
There is no need for any preprocessing, and the number of basic arithmetic
operations is proportional to the size of the data set N . We will call this
approach explicit computation of g. The distance d() is either Euclidean
(l2-norm) or Chebyshev-distance (l∞-norm), or any lp-norm, p ≥ 1.
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In some applications the explicit evaluation of g can be too slow. LibLip
also implements an alternative approach, called fast evaluation. It requires
a preprocessing step, whose complexity depends on the number of data points
and dimensionality of the space. However, evaluation is much faster than in
the explicit method, and requires of order O(log N) arithmetical operations.
The distance d() is the simplicial distance.

2.3 Features of the interpolant

2.3.1 The main properties

The interpolant g(x) implemented in this library provides the best estimate
of the unknown function f in the worst case scenario, based on the provided
data and its Lipschitz constant M . An estimate of M should be provided
by the user, but can also be computed from the data. In many cases an
educated guess is enough. It also deals with Locally Lipschitz functions,
where Lipschitz constant depends on the location x. This method is more
flexible, and is suitable for many functions that change rapidly in one part
of the domain and change slowly in the other parts.

In addition, this method has several useful features.

(1) Preservation of the range of the data: mink{yk} ≤ g(x) ≤ maxk{yk}.
(2) g approximates f uniformly. The upper bound on the error of ap-

proximation is M maxx mink d(x, xk), i.e., proportional to the distance
between the most remote x and its nearest neighbour in the data set.
This upper bound provides a guarantee on the quality of approximation
regardless the distribution of data points or which particular function
f ∈ Lip(M) generated these data.

(3) For polyhedral distance d(x, xk) the interpolant is a piecewise continu-
ous linear function.

(4) The Lipschitz constant of g with respect to d() is M .

(5) The interpolant g depends continuously on the data.

(6) The interpolant g provides a local approximation scheme (i.e., values
of g depend only on the nearest data points).
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2.3.2 Types of approximation problems

LibLip implements various interpolation and approximation methods, which
are suitable for the following problems.

(1) Interpolation problem: Given the data set and the Lipschitz constant
M (i.e., the class Lip(M)).

(2) Interpolation problem: No Lipschitz constant is given. The smallest
M compatible with the data is calculated.

(3) Monotone interpolation: Given data set, Lipschitz constant M , and the
information that f is monotone increasing (decreasing) with respect to
the subset V ⊂ {1, . . . , d} of arguments.

(4) Smoothing problem: Given noisy data set, and Lip(M), compute the
approximation from Lip(M) which minimizes the norm of the residuals
rk = ỹk − yk.

(5) Smoothing problem, estimation of M : Given noisy data set, estimate
the best value of M by using sample splitting or cross-validation, and
compute the approximation with this value of M .

(6) Monotone approximation: Approximation of the data with or without
knowledge of M subject to monotonicity with respect to the variables
from V .

(7) Monotonicity on parts of the domain: Same as monotone approxima-
tion and interpolation, but monotonicity holds only for x ¹ A or x º B,
i.e. in the bottom left or upper right corners of the domain.

(8) Approximation subject to bounds: interpolation or smoothing, subject
to non-constant upper and lower bounds on f .

(9) Locally Lipschitz functions: The Lipschitz constant varies with the
coordinates. All the interpolation problems above with local Lipschitz
constants.
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2.4 Computational methods

2.4.1 Interpolation

Given a data set D = {(xk, yk)}, k = 1, . . . , N, xk ∈ Rd, y ∈ R, and the
Lipschitz class Lip(M) of functions whose Lipschitz constant is smaller or
equal to M , build the optimal interpolant

g(x) =
1

2
(H lower(x) + Hupper(x)), (2.3)

where the upper and lower bounds are given as

Hupper(x) = min
k
{yk + M ||x− xk||},

H lower(x) = max
k
{yk −M ||x− xk||}. (2.4)

The method of calculation is straightforward. The method Value() of
the class SLipInt implements this approach.

If M is unknown, the automatic computation of the smallest Lipschitz
constant compatible with the data is performed by solving

M = inf{C : |yi − yj| ≤ Cd(xi, xj)}.
The method ComputeLipschitz implements this.

2.4.2 Monotone Interpolation

Given the data setD, the class Lip(M) and the knowledge that f is monotone
increasing with respect to a subset of variables V ⊂ {1, . . . , d}. This means
that f is an increasing function of each variable from V , as long as the rest
of the variables is kept fixed.

Computations are performed by using (2.3), with the bounds given as

Hupper(x) = min
k
{yk + M ||(x− xk)V+||},

H lower(x) = max
k
{yk −M ||(xk − x)V+||}, (2.5)

where zV+ denotes the positive part of vector z with respect to subset of
components V : zV+ = (z̄1, . . . , z̄n), with

z̄i =

{
max{zi, 0}, if i ∈ V ,
zi otherwise.
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Monotone decreasing functions are dealt with in the same way, by simply
exchanging the signs of the respective components of x and xk. Functions
decreasing in some arguments and increasing in the other arguments are
accommodated. Note that ||(x− xk)V+|| 6= ||(xk − x)V+||.

Method ValueCons() implements this algorithm.

Variation of this problem: the function is known to be monotone but only
on the subset x ¹ A or x º B, A,B ∈ Rd and a ¹ b means ∀i ∈ V : ai ≤ bi.
The bounds are calculated using (2.5), with

(a− b)V+,A = (z̄1, . . . , z̄n),

where for monotone increasing functions

z̄i =

{
max{ai − bi, min(0, Ai − bi)}, if i ∈ V ,
ai − bi otherwise.

and (a− b)V+,B = (z̄1, . . . , z̄n), with

z̄i =

{
max{ai − bi, min(0, ai −Bi)}, if i ∈ V ,
ai − bi otherwise.

For monotone decreasing functions we use

(a− b)V+,A = (z̄1, . . . , z̄n),

z̄i =

{
max{bi − ai, min(0, Ai − ai)}, if i ∈ V ,
ai − bi otherwise.

and (a− b)V+,B = (z̄1, . . . , z̄n), with

z̄i =

{
max{bi − ai, min(0, bi −Bi)}, if i ∈ V ,
ai − bi otherwise.

These formulae are implemented in the methods ValueConsLeftRegion()
and ValueConsRightRegion() respectively. Some other regions can be con-
verted to the the above cases by exchanging the sign of the respective com-
ponents of x.
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2.4.3 Smoothing

To ensure that the data set D is compatible with the given class Lip(M), we
minimize the norm of the residuals rk = ỹk−yk, (ỹk denotes the smoothened
data), subject to the Lipschitz conditions

∀i, j ∈ {1, . . . , N} : yi − yj ≤ M ||(xi − xj)||. (2.6)

For monotone functions we use ||(xi − xj)V+||.
We solve the following optimization problem

min
∑N

k=1 wk|rk|,
s.t. rk − rj ≤ yj − yk + M ||(xk − xj)||, (2.7)

∀j, k ∈ {1, . . . , N}.

It is converted to a linear programming problem by splitting rk = r+
k − r−k

and using |rk| = r+
k + r−k . w denotes an optional vector of weights, which

reflect relative accuracy of the values yk.
For numerical efficiency we solve the dual problem to (2.7). We use the

simplex method implemented in glpk library.
Methods SmoothLipschitz(), SmoothLipschitzW(), SmoothLipschitzCons(),

SmoothLipschitzWCons() implement these smoothing techniques. Methods
SmoothLipschitzConsLeftRegion(), SmoothLipschitzConsRightRegion(),
SmoothLipschitzWConsLeftRegion(), SmoothLipschitzWConsRightRegion()
are used for smoothing when monotonicity is on the parts of the domain
x ¹ A and x º B.

2.4.4 Estimation of Lipschitz constant

Assume the data set D is noisy, and the Lipschitz constant M is unknown.
We estimate the value of M using sample splitting and cross-validation.

Sample splitting

In sample splitting method, we randomly subdivide D into nonintersecting
subsets D1 and D2 (parameter ratio controls the ratio of data allocated to
D1). The data set D1 is used to approximate the values form D2 using (2.3)
and (2.4) ( (2.5) for monotone functions). We try different values of M ,
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in order to minimize the norm of the difference between the predicted and
observed values from the set D2. We solve a bi-level optimization problem

min
M≥0

1

4

∑
i∈I2

[
max
k∈I1

(ŷk(M)−Mdki) + min
k∈I1

(ŷk(M) + Mdik)− 2yi

]2

, (2.8)

where dkj = ||(xk − xj)V+||. The values ŷk(M) = yk + rk(M) are found
as a solution to problem (2.7), which now includes only the data from D1.
To minimize wrt M we use the golden section algorithm combined with
Fibonacci search.

Once the optimal value of M is found, we smoothen the whole data set
D by solving (2.7).

Method ComputeLipschitzSplit() implements this technique.

Cross-validation

In cross-validation, we repeatedly remove one datum from the set D, and
approximate it using the rest N − 1 data and a fixed value of M . We repeat
this process for all N data, and minimize the norm of the difference between
the predicted and observed values to obtain an optimal M . We solve a bi-
level optimization problem

min
M≥0

1

4

N∑
i=1

[
max
k 6=i

(ŷki(M)−Mdki) + min
k 6=i

(ŷki(M) + Mdik)− 2yi

]2

. (2.9)

At the inner level, for every fixed M we solve N problems for all i ∈
{1, . . . , N}

min
∑

k 6=i |ri
k| (2.10)

s.t. ri
k − ri

j ≤ yj − yk + Mdkj,

∀k, j ∈ {1, . . . , N} \ {i}.

Once the optimal value of M is found, we smoothen the whole data set
D by solving (2.7). For numerical efficiency, the dual to (2.10) is solved.

Method ComputeLipschitzCV() implements this technique. Note that is
is computationally expensive for large N . We advise to estimate the running
time for small N first.
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2.4.5 Locally Lipschitz functions

A function is called locally Lipschitz, if for any x there exist a neighborhood
δx and a constant M(δx), such that for all y, z ∈ δx,

|f(y)− f(z)| ≤ M(δx)||y − z||.
We denote the class of locally Lipschitz functions by LLip(M), and under-
stand that M varies with δx.

Using locally Lipschitz functions offers more flexibility, as one can better
model the shape of the functions flat in some parts of the domain, and rapidly
changing in the other parts.

We will employ the notion of local Lipschitz-constant function

Mf (x) = lim
δ↓0

M(δx) = inf
δ>0

M(δx), where

δx = {z : ||z − x|| < δ},
M(δx) = sup

{ |f(y)− f(z)|
||y − z|| : y, z ∈ δx, y 6= z

}
.

It is shown that in our finite dimensional case

Mf (x) = max
||v||=1

f ′(x, v),

where f ′(x, v) is Clarke’s derivative

f ′(x, v) = lim
α↓0

sup
y→x

1

α
(f(y + αv)− f(y)).

Let M(x) be a local Lipschitz-constant function, and let a ∈ X be some
fixed point. Define on X the function

ha(x) = min
γ(a,x)

∫

γ(a,x)

M(r)dr, (2.11)

where γ(a, x) ∈ X is any rectifiable contour joining a and x. Then ha ∈
LLip(M), and further, the function ha(x) is the tight upper bound on any
locally Lipschitz function with the local Lipschitz-constant function M(x),
which satisfies h(a) = 0. It follows that the values of any locally Lipschitz
function from LLip(M) interpolating yk = f(xk) are bounded by

yk − hxk(x) ≤ f(x) ≤ yk + hxk(x).
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Interpolating the whole data set D, we obtain the tight bounds

σl(x) = max
k
{yk − hxk(x)} ≤ f(x) ≤ min

k
{yk + hxk(x)} = σu(x),

and the optimal interpolant is given as earlier by

g(x) =
1

2
{max

k
{yk − hxk(x)}+ min

k
{yk + hxk(x)}}. (2.12)

It is also possible in incorporate monotonicity condition in the equations
given above. However such equations are not computationally efficient. The
method implemented in LibLip uses an approximation to functions hxk with
radial basis functions h̃xk(||xk − x||). We use a linear spline to represent
h̃xk , with the knots at 0, t1, t2, . . . , tNk

. To calculate h̃xk(ti), take all the data
within the radius ti from xk, and ensure the interpolation conditions hold

∀j ∈ J : |yj − yk| ≤ h̃xk(||xk − xj||),
where J = {j : ||xj − xk|| ≤ ti}.

The methods ValueLocal(), ValueLocalCons(),
ValueLocalConsLeftRegion() and ValueLocalConsRightRegion() imple-
ment this interpolation scheme. These methods should be called after
ComputeLocalLipschitz().

2.4.6 Bounds on f

This library provides a way to specify further bounds on the values of the
interpolant Lo(x) ≤ g(x) ≤ Up(x). These bounds are included into the
routines for calculation of the bounds Hupper and H lower, as well as in all
optimization problems as additional constraints

Lo(xk) ≤ yk + rk ≤ Up(xk),

added to problems such as (2.7).
Computation of these extra bounds could involve sophisticated algo-

rithms, but it is transparent for the LibLip library. These bounds frequently
arise when one has to ensure that the interpolant takes certain values at a sub-
set of points, or is bounded. For example, when interpolating bivariate data
and ensuring that f(x, 0) = f(0, x) = x, x ∈ [0, 1] and f(x, y) ≥ max(x, y).

The member variable UseOtherBounds must be set to 1, and the vir-
tual functions ExtraLowerBound() and ExtraUpperBound() should be im-
plemented in a class derived from SLipInt (see the description of the library).
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Chapter 3

Description of the library

3.1 Installation

Installation of LibLip package is simple: the user needs to unpack the dis-
tribution files and run lipinstall script (on unix), or simply copy the rel-
evant source and .lib files into the desired directories (Windows). For in-
stance, the user can place them into his project directory. Unix distribution
uses libtool software to generate the library files by compiling the source
code. If the user does not have root access on her unix workstation, execute
lipinstall installation directory command, which installs LibLip into
the specified directory, rather than the default library directories.

The package contains a number of header files, and binary static library
files (we also provide .dll files for windows developers). To use LibLip add

#include "LibLip.h"

line to your code, and link against liblip.a library (using
-llip option in the make file).

Some methods in LibLip rely on external packages (also distributed under
GNU licenses), namely GLPK for solving linear programming problems. The
current versions of this package can be downloaded from
http://www.gnu.org/software/glpk/glpk.html, or from the author’s web
site. Windows distribution includes the precompiled lib and dll files.

If the user wants to use smoothing features of LibLip, he should link
against glpk library as well, by using
-lglpk -llip in the makefile

There is a number of sample programs included with this distribution,

19
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which illustrate the major features of the library.

3.2 Programming interface

The method of Lipschitz interpolation is implemented in the programming
library LibLip in C++ language. The interpolation methods can be accessed
via two classes or via a number of procedures.

There are four main classes which provide the interface to the prepro-
cessing and computation and are called SLipInt,SLipIntInf, SLipIntLp

and STCInterpolant. The class SLipInt should be used in the majority
of cases, as it includes most features. Class SLipIntInf is analogous to
SLipInt, but uses l∞ norm instead of Euclidean distance. In lower dimen-
sions it may offer some computational advantages when smoothing the data.
Class SLipIntLp uses an arbitrary lp-norm in Eq. (2.4).

Note in the source code, both SLipInt and SLipIntInf are derived
from a basic class SLipIntBasic, and many of the methods described below
are actually declared in SLipIntBasic, and are inherited by SLipInt and
SLipIntInf. SLipIntBasic contains pure virtual functions and no instances
of this class should be used. The class SLipIntLp is derived from SLipInt

and differs only by using an arbitrary p ≥ 1. The value of p must be of course
specified by the user.

class SLipInt { //simple Lipschitz interpolant
public:
// Computes the interpolant value using the Eulidean norm
double Value(int dim,int N,double* x,double* X,double* Y,double LC);

// Same subject to monotonicity constraints
double ValueCons(int dim,int N, int* Cons, double* x, double* X,

double* Y,double LC);
// Estimates the Lipschitz constant compatible with the data

void ComputeLipschitz(int dim, int N, double* X, double* Y);
// Smoothens the data to match given Lipschitz constant

void SmoothLipschitz(int dim, int N, double* X, double* Y,
double* YT, double LC);

// Computes the Lip. constant using sample splitting and smoothens the data
void ComputeLipschitzSplit(int dim, int N, double* X, double* Y,

double* YT, double ratio);
...
};
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class STCInterpolant {
//Interpolant which uses simplicial distance
//and fast evaluation method with preprocessing
public:
// supplies the data set to this class.
// All other methods are called after SetData.

void SetData(int dim, int N, double* x, double* y, int test=0);
// Determines an estimate of the Lipschitz constant from the data

double DetermineLipschitz();
// Constructs the interpolant for either fast or explicit evaluation

void Construct();
void ConstructExplicit();

// Computes the value of the interpolant
double Value(int dim, double* x);
double ValueExplicit(int dim, double* x);

// Sets the value of the Lipschitz constant (or its estimate)
void SetConstants(double newconst);

...
}

The class STCInterpolant uses simplicial distance, and by using prepro-
cessing method, can achieve faster evaluation time for dim < 5. The class
SLipInt uses explicit evaluation when distance d() is Euclidean (l2), and
SLipIntInf uses Chebyshev (l∞) norm. Recommended for higher dimen-
sion. Class SLipIntLp uses an arbitrary lp-norm.
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3.3 Members of SLipInt class.

Class SLipInt implements explicit evaluation of Lipschitz interpolant and
computation of the Lipschitz constant. It does not use any special data
structure or preprocessing, except for smoothing, and relies on Eq. (2.2).
The simplicity of the evaluation process and program code is a feature of
this class. It can be used for high dimension. It can be used for Locally
Lipschitz functions, where the Lipschitz constant depends on the position x,
and is estimated automatically from the data.

Evaluation of the interpolant

Methods to compute the value of the interpolant at a given point x.

double Value(int dim,int N,double* x,double* X,double* Y,double LC, int* index=NULL)

Computes and returns the value of the interpolant g(x). Does not require any
preprocessing. dim is the dimension, N is the number of data, x is the vector of
size dim, X is the vector of data of size N × dim which contains values xk

i in its
rows, y is the vector of size N of values to be interpolated, LC is the Lipschitz
constant.
Notes: The optional parameter index is an array of size N , used to index the data
in a large data set, which are used in the construction of the interpolant. For
example, index[0]=1, index[1]=5, ... One can use the data for interpolation selec-
tively, by indexing the required values. The parameter N should be the number
of selected data used in the interpolation, not the size of the whole data set.

double Value(int dim,int N, double* x, double* X,double* Y, int* index=NULL);

Variation of the above, uses Lipschitz constants automaticlly identified from the
data. Should only be called after ComputeLipschitz(),
or ComputeLipschitzCV(), or ComputeLipschitzSplit(), or setting the mem-
ber variable MaxLipConst.

double ValueLocal(int dim, int N, double* x, double* X,double* Y);

Variation of the above for locally Lipschitz functions, uses Lipschitz constants de-
pendent on the position x, automaticlly identified from the data. Should only
be called after ComputeLocalLipschitz().

Variations for constrained interpolation
double ValueCons(int dim,int N, int* Cons, double* x, double* X,double* Y, double

LC, int* index=NULL);
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Same as Value(), for monotone functions. Cons is an array of size dim specifying
monotonicity constraints. Constraints are coded as follows: Cons[i] = 1 means
the function is increasing with respect to the i-th variable, Cons[i] = −1 means it
is decreasing, Cons[i] = 0 means unrestricted.

double ValueConsLeftRegion(int dim,int N, int* Cons, double* x, double* X,double*
Y, double LC, double* LeftRegion, int* index=NULL);
Same as ValueCons(), for monotone functions in the region x ¹ LeftRegion.
LeftRegion is a vector of size dim denoting the top right corner of the region of
monotonicity.

double ValueConsRightRegion(int dim,int N, int* Cons, double* x, double* X,double*
Y, double LC, double* RightRegion, int* index=NULL);
Same as ValueConsLeftRegion(), for monotone functions in the region x º
RightRegion. RightRegion is a vector of size dim denoting the bottom left corner
of the region of monotonicity.

double ValueLocalCons(int dim, int N, int* Cons, double* x, double* X,double*
Y);
Same as ValueLocal(), but for monotone functions. Cons is an array of size dim
specifying monotonicity constraints, as in ValueCons().

double ValueLocalConsLeftRegion(int dim, int N, int* Cons, double* x, double*
X,double* Y, double* Region);
Same as ValueLocalCons(), for monotone functions in the region x ¹ LeftRegion.
LeftRegion is a vector of size dim denoting the top right corner of the region of
monotonicity.

double ValueLocalConsRightRegion(int dim,int N, int* Cons, double* x, double*
X,double* Y, double* RightRegion);
Same as ValueLocalConsLeftRegion(), for monotone functions in the region x º
RightRegion. RightRegion is a vector of size dim denoting the bottom left corner
of the region of monotonicity.

Smoothing the data

Methods for smoothing noisy data. The output is the smoothened data vector
TData, which can subsequently be used as Y in Value() and its variations. These
methods use glpk programming library.

void SmoothLipschitz(int dim, int N, double* X, double* Y, double* TData, double
LC);
Computes the vector TData of modified (smoothened) data values, consistent with
the specified Lipschitz constant LC. dim is the dimension, N is the size of the
data set, the abscissae of the data points are in the array X of size N×dim, stored
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in rows, the data values are supplied in Y of size N . The memory for the array
TData should be provided in the calling routine.

void SmoothLipschitzW(int dim, int N, double* X, double* Y, double* TData, double
LC, double* W)
Variation of the above, requires an array of non-negative weights of size N . Weights
reflect the relative confidence in the accuracy of data values. Data with high
weights are not modified. Weights do not have to be normalized to one.

void SmoothLipschitzCons(int dim, int N, int* Cons, double* X, double* Y, double*
TData, double LC)
Same as SmoothLipschitz, subject to monotonicity constraints. The vector Cons
of size dim contains information about monotonicity constraints. Constraints are
coded as follows: Cons[i] = 1 means the function is increasing with respect to the
i-th variable, Cons[i] = −1 means it is decreasing, Cons[i] = 0 means unrestricted.

void SmoothLipschitzConsLeftRegion(int dim, int N, int* Cons, double* X, double*
Y, double* TData, double LC, double* LeftRegion)
Same as SmoothLipschitzCons, subject to monotonicity constraints in the region
x ¹ LeftRegion.

void SmoothLipschitzConsRightRegion(int dim, int N, int* Cons, double* X, double*
Y, double* TData, double LC, double* RightRegion)
Similar to SmoothLipschitzConsLeftRegion, subject to monotonicity constraints
in the region x º RightRegion.

void SmoothLipschitzWCons(int dim, int N, int* Cons, double* X, double* Y, double*
TData, double LC, double* W)
Same as SmoothLipschitzCons, subject to weighting vector W .

void SmoothLipschitzWConsLeftRegion(int dim, int N, int* Cons, double* X, double*
Y, double* TData, double LC, double *W, double* LeftRegion)

void SmoothLipschitzWConsRightRegion(int dim, int N, int* Cons, double* X, double*
Y, double* TData, double LC, double *W, double* RightRegion)
Same as SmoothLipschitzConsLeftRegion, and SmoothLipschitzConsRightRegion
subject to weighting vector W .

Estimation of the Lipschitz constant

Various methods of estimating the Lipschitz constant from the data. If the data
is noisy, we use sample splitting or cross-validation methods, and then smoothen
the data with the computed Lipschitz constant.

void ComputeLipschitz(int dim,int N,double* X,double* Y);
Computes the smallest Lipschitz constant consistent with the data. Bear in mind
that ComputeLipschitz requires O(dN2) operations and should be avoided if
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there are other means to estimate the Lipschitz constant. The value is kept in
MaxLipConst member variable.

void ComputeLocalLipschitz(int dim,int N,double* X,double* Y);

Computes various arrays which contain information about the local Lipschitz con-
stants estimated from the data. The values are kept in GridLim, GridR, GridV al,
member variables. After this method, the value of the interpolant can be obtained
by using ValueLocal().

void ComputeLipschitzSplit(int dim,int N,double* X,double* Y, double* TData,
double ratio=0.5,int type=0, int* Cons=NULL, double* Region=NULL, double
*W=NULL);

Computes an estimate of the Lipschitz constant from noisy data using sample
splitting (with the ratio ratio), and then smoothens the data using the computed
Lipschitz constant. The smoothened data are returned in TData, and the com-
puted Lipschitz constant is kept in the member variable MaxLipConst. The data
is split randomly into subsets D1 and D2, the first one is used to predict the values
in the second. ratio is the probability that a datum is allocated to subset D1.
Parameter type can have four values. type = 0 means normal Lipschitz approx-
imation, type = 1 means monotone approximation, in which case vector Cons
denotes the monotonicity constraints as in ValueCons(), and should be set by the
user. type = 2 means monotone in the left region, and type = 4 means mono-
tone in the right region, in which cases the parameter Region must be set (as in
ValueConsLeftRegion(). If the accuracy of the data is not the same, the vector
of non-negative weights should be provided, as in SmoothLipschitzW().

void ComputeLipschitzCV(int dim,int N,double* X,double* Y, double* TData, int
type=0, int* Cons=NULL, double* Region=NULL, double *W=NULL);

Computes an estimate of the Lipschitz constant from noisy data using Cross-
Validation, and then smoothens the data using the computed Lipschitz constant.
The smooehtned data are returned in TData, and the computed Lipschitz constant
is kept in the member variable MaxLipConst. The parameters have the same mean-
ing as in ComputeLipschitzSplit(). This method uses N -fold cross-validation
technique, in which each datum is removed from the data set and its value is pre-
dicted using the rest of the data and an estimate of the Lipschitz constant. Thus it
involves solving N smoothing problems, i.e., quite an expensive procedure. Avoid
it when N is large. For small data set it is preferable to sample splitting, as the
data sets in the latter method may be too small.

Auxiliary methods

This is a collection of methods useful for transforming the data and experimenting
with various features of the library.
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void ComputeScaling(int dim,int N,double* X,double* Y)

Computes the array of scaling factors (member variable Scaling, an array of size
dim), needed to standardize the data to have standard deviation 1 in respect to all
variables. Scaling contains 1/the standard deviations. After calling this method,
one can standardize the data by using X[i*dim+j] *= Scaling[j] for all i and
j = 1, . . . , d.

void ConvertXData(int dim,int N,double* X);

Transposes the matrix X. Useful when the LibLip is called from other pro-
gram/languages which store the matrices columnwise (as in Fortran, Matlab, etc.).
LibLip uses C convention and stores data in rows. The transposed matrix is re-
turned in X.

void ConvertXData(int dim,int N,double* X, double* Aux);

Transposes the matrix X. Same as the previous method, but the transposed X is
returned in the array Aux. The memory for Aux should be allocated in the calling
routine (dim×N).

void Dominates(int dim, double* x, double* y, int* Cons);

Returns 1 if x º y, with respect to the given array of indices. That is, returns 1
if ∀i ∈ {1, . . . , d}, Cons[i] 6= 0 : xi ≥ yi. Useful when dealing with monotonicity
condition.

int VerifyMonotonicity(int dim, int N, int* Cons, double* X, double* Y, double
LC, double eps);

Returns 1 if the data set is compatible with the given monotonicity and Lipschitz
conditions. That is the data set should be compatible with the class Lip(LC), and
also xk º xi should imply yk ≥ yi. The direction of the inequality changes for
monotone decreasing functions. Functions can be increasing in some variables and
decreasing in the others. This case is reduced to functions increasing in all variables
by changing the sign of some components of x. The method accommodates all
these cases (coded in Cons, Cons[j] = 1 means the function is increasing wrt j-th
variable,Cons[j] = −1 means decreasing). This method is meaningful when Cons
does not have zero components (i.e., functions unrestricted in some variables). eps
is the tolerance parameter (i.e., we require yk − yi ≥ eps).

int VerifyMonotonicityRegionLeft(int dim, int N, int* Cons, double* X, double*
Y, double* LeftRegion, double LC, double eps);

int VerifyMonotonicityRegionRight(int dim, int N, int* Cons, double* X, double*
Y, double* RightRegion, double LC, double eps);

Variations of VerifyMonotonicity(), where monotonicity condition is checked in
the regions x ¹ LeftRegion, or x º RightRegion.
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Extra bounds

When extra bounds are required, they must be implemented in a class derived
from SLipInt or SLipIntLp or SLipIntInf classes.

double ExtraUpperBound(int dim, double* x, double * param)
double ExtraLowerBound(int dim, double* x, double * param)

The derived class calculates these extra bounds and returns the computed values.
x is the point at which the bounds are calculated and param contains the Lipschitz
constant (its current value, when these methods are called when estimating the
best value of the Lipschitz constant). See example in a later section. Note that
the member variable UseOtherBounds must be set to 1.

Useful member variables

Most member variables are declared as public, for easy inheritance, and access to
these variables from the derived classes.

double MaxLipConst
The Lipschitz constant compatible with the data set.

double g1,g2
After calculating the value of the interpolant, g1,g2 contain the lower and upper
bounds respectively. The value of the interpolant is g1+g2

2
int UseOtherBounds

Flag indicating whether the range of f(x) should be restricted by the additional
upper and lower bounds. The user should set this variable to 1 and imple-
ment the virtual member functions ExtraUpperBound() and ExtraLowerBound()
in the derived class. The bounds need not be constants, and the syntaxis is
ExtraUpperBound(int dim, double* x, double * param), where x is the point
at which the bounds are required, and param is an optional parameter passed to
this function (currently the current value of the Lipschitz constant is passed). See
section 2.4.6 on additional bounds.

3.4 Members of SLipIntInf class.

This class is derived from SLipIntBasic, and shares most methods with
SLipInt. The difference between the two classes is that SLipIntInf uses l∞-
norm and not Euclidean distance in the Lipschitz condition. For low dimen-
sion (d < 5) this may bring a computational advantage when smoothing the
data, as the number of constraints in the LP problem can be reduced. This
class also implements a smoothing method in the simplicial distance, which is
useful in conjunction with the evaluation methods of STCInterpolant class.
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This section only details the methods which are different from those of
SLipInt. Refer to the description of SLipInt class for information on the
other methods.

void SmoothLipschitzSimp(int dim, int N, double* X, double* Y, double* T, double
LC);
Computes the vector T of the modified (smoothened) data values, consistent with
the specified Lipschitz constant LC. The Lipschitz condition is understood in
the simplicial distance (i.e., when d() is simplicial distance in (2.2)). dim is the
dimension, N is the size of the data set, the abscissae of the data points are in the
array X of size N × dim, stored in rows, the data values are supplied in Y of size
N . The memory for the array T should be provided in the calling routine.

void SmoothLipschitzSimpW(int dim, int N, double* X, double* Y, double* T, double
LC, double* W);
Variation of the previous procedure, with the vector of weights W reflecting relative
accuracy of the data.

3.5 Members of SLipIntLp class.

This class is derived from SLipInt, and allows one to execute all the methods
described above. The only difference is that it requires specification of the
parameter p of the lp-norm, which is done in the methods

void SetP( double p) Sets the value of the parameter p.
double GetP( double p) Returns the value of the parameter p.
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3.6 Members of STCInterpolant class.

This class implements explicit and fast evaluation of the interpolant in the
simplicial distance. This method requires a preprocessing step. The first
call should be SetData and then the preprocessing routine should be called
in Construct or ConstructExplicit. Do not use Construct for dimension
dim > 5, as it becomes computationally very expensive.

void SetData(int dim, int N, double* x, double* y, int test=0)
This method supplies the data set to be interpolated. The data set is supplied in
the variables x and y. x is a two-dimensional array N × dim that contains values
xk

i in its rows, and y is an array of size N which contains the values yk. N is the
size of the data set and dim is the dimension. The last parameter test may be
omitted, but if it is set to 1, then the data will be screened for repeated x (which
slows down the process marginally). The construction algorithm assumes that all
data points are unique. If the user is unsure, test must be set to 1. The original
data in x, y is not needed after the call to SetData. SetData must be called
only once before any other method.

void SetDataColumn(int dim, int N, double* x, double* y, int test=0)
The same as above, but assumes the data are stored in columns (like in Fortran).
Should be called instead of SetData.

double DetermineLipschitz()
This method determines an (under)estimate of the Lipschitz constant based on the
data. Bear in mind that DetermineLipschitz is a rather slow procedure O(dN2)
and should be avoided if there are other means to estimate the Lipschitz constant.
Returns the computed value of the Lipschitz constant.

void SetConstants(double newconst)
void SetConstants()

Supplies the Lipschitz constant to the algorithm, either provided by the user, or cal-
culated from the data. It can be called with no parameters after DetermineLipschitz
only.

void Construct()
Performs the preprocessing step, necessary for the subsequent evaluation by the
fast method. This method may require significant computational effort. Should
not be called after ConstructExplicit().

void ConstructExplicit()
Prepares the data for the subsequent evaluation of the interpolant using explicit
evaluation. No significant preprocessing. Should not be called after Construct().

double Value(int dim, double* x )
Computes and returns the value of the interpolant g(x) using the fast method.
Should be called after preprocessing by Construct. If called after
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ConstructExplicit, the explicit evaluation routine ValueExplicitwill be exe-
cuted instead. Parameter x is an array of size dim. dim should be specified as the
dimension of the data m (the algorithm will automatically compute the required
slack variable). The user may precompute the slack variable himself (see examples
in the next section), and specify dim as d + 1, which is marginally faster.

double ValueExplicit(int dim, double* x )
Computes the value of the interpolant at x using explicit method. Can be called
after Construct or ConstructExplicit. As in Value, dim should be specified as
the dimension of the data d (the algorithm will automatically compute the required
slack variable). The user may precompute the slack variable himself, and specify
dim as d + 1, which is marginally faster. Parameter x is an array of size dim.
Returns g(x).

void FreeMemory()
Frees the memory occupied by the data structures computed in Construct(),
which can be very large. It destroys the interpolant, and Value() methods
cannot be called after FreeMemory(). Automatically called from the destructor.
This method is useful to deallocate memory while the object mviInterpolant still
exists.

int LastError()

Returns the error code of the last operation. Useful to check whether the con-
struction or evaluation of the interpolant were successful. 0 indicates a successful
operation. Other possible values are: 1 – lower interpolation failed, 2– upper inter-
polation failed, 3 – both failed, 10 – Lipschitz constant too small, or repeated data.
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3.7 Procedural interface

The following procedures provide procedural interface to the members of
classes SLipInt SLipIntInf and STCInterpolant. It is useful when call-
ing LibLip from procedural languages (like Fortran) or other packages (like
Matlab, Mathematica). Note that all parameters are passed by reference, as
this may be required by such languages.

Not all the methods of SLipInt and SLipIntInf classes have procedural in-
terface. There is no interface for specifying additional bounds (ExtraUpperBound,
ExtraLowerBound methods), nor interface to the members of SLipIntLp

class.

Interface to the members of SLipInt class

double LipIntValue(int* Dim, int* N, double* x, double* X, double* Y,
double* LC, int* Index=NULL);

Computes and returns the value of the interpolant g(x). Does not require any
preprocessing. dim is the dimension, N is the number of data, x is the vector of
size dim, X is the vector of data of size N × dim which contains values xk

i in its
rows, y is the vector of size N of values to be interpolated, LC is the Lipschitz
constant.
Notes: The optional parameter index is an array of size N , used to index the data
in a large data set, which are used in the construction of the interpolant. For
example, index[0]=1, index[1]=5, ... One can use the data for interpolation selec-
tively, by indexing the required values. The parameter N should be the number
of selected data used in the interpolation, not the size of the whole data set.

double LipIntValueAuto(int* Dim, int* N, double* x, double* X, double* Y,
int* Index=NULL);

Variation of the above, uses Lipschitz constants automaticlly identified from the
data. Should only be called after LipIntComputeLipschitz(),
or LipIntComputeLipschitzCV(), or LipIntComputeLipschitzSplit().

double LipIntValueCons(int* Dim, int* N, int* Cons, double* x, double* X,
double* Y, double* LC, int* Index=NULL);

Same as LipIntValue(), for monotone functions. Cons is an array of size Dim
specifying monotonicity constraints. Constraints are coded as follows: Cons[i] = 1
means the function is increasing with respect to the i-th variable, Cons[i] = −1
means it is decreasing, Cons[i] = 0 means unrestricted.

double LipIntValueConsLeftRegion(int* Dim, int* N, int* Cons, double* x, double*
X, double* Y, double* LC, double* Region, int* Index=NULL);
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Same as LipIntValueCons(), for monotone functions in the region x ¹ LeftRegion.
LeftRegion is a vector of size dim denoting the top right corner of the region of
monotonicity.

double LipIntValueConsRightRegion(int* Dim, int* N, int* Cons, double* x,
double* X, double* Y, double *LC, double* Region, int* Index=NULL);
Same as LipIntValueConsLeftRegion(), for monotone functions in the region
x º RightRegion. RightRegion is a vector of size dim denoting the bottom left
corner of the region of monotonicity.

double LipIntValueLocal(int* Dim, int* N, double* x, double* X, double* Y);
Variation of the above for locally Lipschitz functions, uses Lipschitz constants
dependent on the position x, automaticlly identified from the data. Should only
be called after LipIntComputeLocalLipschitz().

double LipIntValueLocalCons(int* Dim, int* N,int* Cons, double* x, double*
X, double* Y);
Same as LipIntValueLocal(), but for monotone functions. Cons is an array of
size dim specifying monotonicity constraints, as in LipIntValueCons().

double LipIntValueLocalConsLeftRegion(int* Dim, int* N, int* Cons, double*
x, double* X, double* Y, double* Region);
Same as LipIntValueLocalCons(), for monotone functions in the region x ¹
LeftRegion. LeftRegion is a vector of size dim denoting the top right corner of
the region of monotonicity.

double LipIntValueLocalConsRightRegion(int* Dim, int* N,int* Cons, double*
x, double* X, double* Y, double* Region);
Same as LipIntValueLocalConsLeftRegion(), for monotone functions in the re-
gion x º RightRegion. RightRegion is a vector of size dim denoting the bottom
left corner of the region of monotonicity.

void LipIntComputeLipschitz(int* Dim, int* N, double* X, double* Y);
Computes the smallest Lipschitz constant consistent with the data. Bear in mind
that ComputeLipschitz requires O(dN2) operations and should be avoided if there
are other means to estimate the Lipschitz constant. The value is retrieved using
LipIntGetLipConst() .

void LipIntComputeLipschitzSplit(int* Dim, int* N, double* X, double* Y, double*
T, double* ratio, int* type, int* Cons=NULL, double* Region=NULL, double
*W=NULL);
Computes an estimate of the Lipschitz constant from noisy data using sample
splitting (with the ratio ratio), and then smoothens the data using the computed
Lipschitz constant. The smoothened data are returned in TData, and the com-
puted Lipschitz constant is retrieved using LipIntGetLipConst() . The data is
split randomly into subsets D1 and D2, the first one is used to predict the values
in the second. ratio is the probability that a datum is allocated to subset D1.
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Parameter type can have four values. type = 0 means normal Lipschitz approx-
imation, type = 1 means monotone approximation, in which case vector Cons
denotes the monotonicity constraints as in LipIntValueCons(), and should be
set by the user. type = 2 means monotone in the left region, and type =
4 means monotone in the right region, in which cases the parameter Region
must be set (as in LipIntValueConsLeftRegion(). If the accuracy of the data
is not the same, the vector of non-negative weights should be provided, as in
LipIntSmoothLipschitz().

void LipIntComputeLipschitzCV(int* Dim, int* N, double* X, double* Y, double*
T, int* type, int* Cons=NULL, double* Region=NULL, double *W=NULL);

Computes an estimate of the Lipschitz constant from noisy data using Cross-
Validation, and then smoothens the data using the computed Lipschitz constant.
The smoothened data are returned in TData, and the computed Lipschitz con-
stant is retrieved using LipIntGetLipConst(). The parameters have the same
meaning as in LipIntComputeLipschitzSplit(). This method uses N -fold cross-
validation technique, in which each datum is removed from the data set and its
value is predicted using the rest of the data and an estimate of the Lipschitz con-
stant. Thus it involves solving N smoothing problems, i.e., quite an expensive
procedure. Avoid it when N is large. For small data set it is preferable to sample
splitting, as the data sets in the latter method may be too small.

void LipIntSmoothLipschitz(int* Dim, int* N, double* Xd, double* Y, double*
T, double* LC, int *fW, int *fC, int* fR, double* W=NULL, int* Cons=NULL,
double* Region=NULL);

Computes the vector T of modified (smoothened) data values, consistent with the
specified Lipschitz constant LC. dim is the dimension, N is the size of the data
set, the abscissae of the data points are in the array X of size N × dim, stored in
rows, the data values are supplied in Y of size N . The memory for the array T
should be provided in the calling routine.

Optional parameters: flags fW , fC and fR indicate that the optional parameters must
be set. if fW = 1, W should be a vector of size N of non-negative weights.
Weights reflect the relative confidence in the accuracy of data values. Data with
high weights are not modified. Weights do not have to be normalized to one.

fC = 1 indicates monotone approximation. The vector Cons of size dim contains
information about monotonicity constraints. Constraints are coded as follows:
Cons[i] = 1 means the function is increasing with respect to the i-th variable,
Cons[i] = −1 means it is decreasing, Cons[i] = 0 means unrestricted.

fR = 1 indicates monotonicity in the region x ¹ Region. fR = 2 indicates monotonicity
in the region x º Region. In both cases Region should be a vector of size dim.

double LipIntGetLipConst() ;
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Returns the computed Lipschitz constant (after calling LipIntComputeLipschitz()
type procedures.

int LipIntComputeScaling(int* Dim, int* N, double* XData, double* YData);
Computes the scaling factors necessary to normalize the data to have standard
deviation one in each variable.

void LipIntGetScaling(double *S) ;
Returns in S the scaling factors necessary to normalize the data to have standard
deviation one in each variable. Should be called after LipIntComputeScaling().

void ConvertXData(int* dim, int* N, double* X);
Transposes the matrix X. Useful when the LibLip is called from other pro-
gram/languages which store the matrices columnwise (as in Fortran, Matlab, etc.).
LibLip uses C convention and stores data in rows. The transposed matrix is re-
turned in X.

void ConvertXData(int* dim, int* N, double* X, double* Aux);
Transposes the matrix X. Same as the previous procedure, but the transposed
X is returned in the array Aux. The memory for Aux should be allocated in the
calling routine (dim×N).

int LipIntVerifyMonotonicity(int* dim, int* N, int* Cons, double* X, double*
Y, double* LC, double* eps);
Returns 1 if the data set is compatible with the given monotonicity and Lipschitz
conditions. That is the data set should be compatible with the class Lip(LC), and
also xk º xi should imply yk ≥ yi. The direction of the inequality changes for
monotone decreasing functions. Functions can be increasing in some variables and
decreasing in the others. This case is reduced to functions increasing in all variables
by changing the sign of some components of x. The method accommodates all
these cases (coded in Cons, Cons[j] = 1 means the function is increasing wrt j-th
variable,Cons[j] = −1 means decreasing). This method is meaningful when Cons
does not have zero components (i.e., functions unrestricted in some variables). eps
is the tolerance parameter (i.e., we require yk − yi ≥ eps).

int LipIntVerifyMonotonicityLeftRegion(int* dim, int* N, int* Cons, double*
X, double* Y, double* Region, double* LC, double* eps);

int LipIntVerifyMonotonicityRightRegion(int* dim, int* N, int* Cons, double*
X, double* Y, double* Region, double* LC, double* eps);
Variations of LipIntVerifyMonotonicity(), where monotonicity condition is checked
in the regions x ¹ Region, or x º Region.

Interface to the members of SLipIntInf class

The procedures are exactly the same as those that provide interface to SLipInt
class. The naming convention: use the prefix LipIntInf instead of LipInt, for
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example LipIntInfValue(), etc.
There are two new procedures which perform smoothing in the simplicial distance
void LipIntInfSmoothLipschitzSimp(int* dim, int* N, double* X, double* Y,

double* T, double* LC);
Computes the vector T of the modified (smoothened) data values, consistent with
the specified Lipschitz constant LC. The Lipschitz condition is understood in
the simplicial distance (i.e., when d() is simplicial distance in (2.2)). dim is the
dimension, N is the size of the data set, the abscissae of the data points are in the
array X of size N × dim, stored in rows, the data values are supplied in Y of size
N . The memory for the array T should be provided in the calling routine.

void LipIntInfSmoothLipschitzSimpW(int* dim, int* N, double* X, double* Y,
double* T, double* LC, double* W);
Variation of the previous procedure, with the vector of weights W reflecting relative
accuracy of the data.

Interface to the members of STCInterpolant class

void STCSetLipschitz(double* LC);
Sets the Lipschitz constant. Must be called before BuildLipInterpolant() pro-
cedure.

int STCBuildLipInterpolant(int* Dim, int* Ndata, double* x, double* y);
Builds Lipschitz interpolant using the simplicial distance for subsequent fast eval-
uation. Parameters Dim - dimension of the data set NData is the size of the data
set, x contains the abscissae of the data, stored rowwise, y contains the values to
be interpolated.

int STCBuildLipInterpolantExplicit(int* Dim, int* Ndata, double* x, double*
y);
As above, but for explicit evaluation of the interpolant, uses very little preprocess-
ing.

int STCBuildLipInterpolantColumn(int* Dim, int* Ndata, double* x, double*
y);
As above, but the data in x are stored columnwise, like in Fortran.

int STCBuildLipInterpolantExplicitColumn(int* Dim, int* Ndata, double* x,
double* y);
As above, but for explicit evaluation of the interpolant, uses very little preprocess-
ing.

double STCValue( double* x );
Computes the value of the interpolant at any given point x, using fast method.
Must be called after STCBuildLipInterpolant() procedure.

double STCValueExplicit( double* x );
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Same but using explicit evaluation with little preprocessing. Must be called after
STCBuildLipInterpolantExplicit() procedure.

void STCFreeMemory();
Frees memory structures occupied by the interpolant. No evaluation methods are
to be called after STCFreeMemory. However, building of a new interpolant using
STCBuildLipInterpolant is allowed.
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Examples of usage

4.1 Sample code

There are several examples of the usage of LibLip provided in the distri-
bution. The best way to use LibLip is to declare an instance of the class
SLipInt, SLipIntLp or STCInterpolant and call its members directly.

These classes are declared in LibLipc.h.

4.1.1 Interpolation

When using the class SLipInt, there is no need for preprocessing. The user
just calls various evaluation routines and supplies the data set as well as
the point x. The Lipschitz constant can be estimated from the data set
automatically. If the user desires to use local Lipschitz interpolation, then
the array of Lipschitz constants must be computed automatically from the
data by calling ComputeLocalLipschitz.

When using the class STCInterpolant, there is a need for preprocess-
ing. There are four basic steps: to supply the data, to supply the Lipschitz
constant, to construct the interpolant, and to evaluate it at the desired point.

37
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// example of usage of SLipInt class
#include "LibLipc.h"
int dim=4; // the dimension and size of the data set
int npts=1000;

void main(int argc, char *argv[]){
double LipConst=4;
double *x, *XData, *YData;

// arrays to store the data
x=(double*)malloc(dim*sizeof(double));
XData=(double*)malloc(dim*npts*sizeof(double));
YData=(double*)malloc(npts*sizeof(double));

SLipInt LipInt;
// can also use SLipIntInf LipInt;
for(i=0;i<npts;i++) {
for(j=0;j<dim;j++) // generate random data in [0,3]^m
XData[i*dim + j]=x[j]=random(3.0,0);

YData[i]=fun(x); // some function values
}

for(j=0;j<dim;j++) x[j]=random(3.0,0); // some random x

// calculate the value
w=LipInt.Value(dim,npts,x,XData, YData,LipConst);

// estimate Lipschitz constant
LipInt.ComputeLipschitz(dim,npts,XData, YData);

// uses the computed Lipschitz constant
w=LipInt.Value(dim,npts,x,XData, YData);

// the same using local Lipschitz constants
LipInt.ComputeLocalLipschitz(dim,npts,XData, YData);

// calculate the value
w=LipInt.ValueLocal(dim,npts,x,XData, YData);

free(XData); free(YData); free(x);
}
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// example of usage of SLipInt class for monotone interpolation
#include "LibLipc.h"
int dim=4; // the dimension and size of the data set
int npts=1000;

void main(int argc, char *argv[]){
double LipConst=4;
double *x, *XData, *YData;

// arrays to store the data
x=(double*)malloc(dim*sizeof(double));
XData=(double*)malloc(dim*npts*sizeof(double));
YData=(double*)malloc(npts*sizeof(double));
int* Cons=(int*)malloc(dim*sizeof(int));
double* Region=(double*)malloc(dim*sizeof(double));

SLipInt LipInt;
// can also use SLipIntInf LipInt; or SLipIntLp LipInt
for(i=0;i<npts;i++) {
for(j=0;j<dim;j++) // generate random data in [0,3]^m
XData[i*dim + j]=x[j]=random(3.0,0);

YData[i]=fun(x); // some function values
}

Cons[0]=1; // function monotone incr. wrt first variable
Cons[1]=-1; // function monotone decr. wrt first variable
Cons[2]=0; // unrestricted wrt other variables
Cons[3]=0; //
for(j=0;j<dim;j++) Region[j]=1.5;
for(j=0;j<dim;j++) x[j]=random(3.0,0); // some random x

// calculate the value
w=LipInt.ValueCons(dim,npts,Cons,x,XData, YData,LipConst);

// assume monotonicity for x<<Region only
w=LipInt.ValueConsLeftRegion(dim,npts,Cons,x,XData, YData,

LipConst,Region);

LipInt.ComputeLocalLipschitz(dim,npts,XData, YData);
w=LipInt.ValueLocalCons(dim,npts,Cons,x,XData, YData);
w=LipInt.ValueLocalConsLeftRegion(dim,npts,Cons,x,XData, YData,Region);
free(XData); free(YData); free(x); free(Cons); free(Region);

}
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// example of usage of SLipInt class with extra bounds
#include "LibLipc.h"
int dim=4; // the dimension and size of the data set
int npts=1000;
class MySLipInt: public SLipInt { // derived class
public:
virtual double ExtraUpperBound(int dim, double* x, double * param)
{ double B;
// compute some bound at x with the Lip. constant param
B=*param * max(x[0],x[1]);

return B;};
virtual double ExtraLowerBound(int dim, double* x, double * param)
{ double B = *param * min(x[0],x[1]);
// compute some other bound at x with the Lip. constant param

return B;};
}
void main(int argc, char *argv[]){
double LipConst=4;
double *x, *XData, *YData;

// arrays to store the data
x=(double*)malloc(dim*sizeof(double));
XData=(double*)malloc(dim*npts*sizeof(double));
YData=(double*)malloc(npts*sizeof(double));
MySLipInt LipInt;
LipInt.UseOtherBounds=1;
for(i=0;i<npts;i++) {
for(j=0;j<dim;j++) // generate random data in [0,3]^m
XData[i*dim + j]=x[j]=random(3.0,0);

YData[i]=fun(x); // some function values
}
for(j=0;j<dim;j++) x[j]=random(3.0,0); // some random x

// calculate the value
w=LipInt.Value(dim,npts,x,XData, YData,LipConst);

// estimate Lipschitz constant
LipInt.ComputeLipschitz(dim,npts,XData, YData);

// uses the computed Lipschitz constant
w=LipInt.Value(dim,npts,x,XData, YData);

free(XData); free(YData); free(x);
}
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// example of usage of STCInterpolant class
#include "LibLipc.h"
int dim=4; // the dimension and size of the data set
int npts=1000;

void main(int argc, char *argv[]){
double LipConst;
double *x, *XData, *YData;

// arrays to store the data
x=(double*)malloc(dim*sizeof(double));
XData=(double*)malloc(dim*npts*sizeof(double));
YData=(double*)malloc(npts*sizeof(double));

STCInterpolant LipInt;
for(i=0;i<npts;i++) {
for(j=0;j<dim;j++) // generate random data in [0,3]^m
XData[i*dim + j]=x[j]=random(3.0,0);

YData[i]=fun(x); // some function values
}

// supply the data and eliminate repeated values
LipInt.SetData(dim,npts, XData,YData,1);
LipConst=LipInt.DetermineLipschitz();
LipInt.SetConstants(); // supply Lipschitz constant
LipInt.Construct(); // construct the interpolant
free(XData); free(YData); // may now destroy the data

double w,s,x1[10]; // reserve space for at least dim+1 components
for(j=0;j<dim;j++) x1[j]=random(3.0,0); // some random x
w=LipInt.Value(dim,x1); // calculate the value

// alternatively, pre-compute the slack variable
for(s=0,j=0; j<dim; j++) s+=x1[j];
x1[dim]= 1.0-s;
w=LipInt.Value(dim+1,x1); // calculate the value
w=LipInt.ValueExplicit(dim+1,x1); // same using explicit method
LipInt.FreeMemory(); // destroys the interpolant

}
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// an example using procedural interface
#include "LibLip.h"

int dim=4; // the dimension and the data set
int npts=1000;

void main(int argc, char *argv[]){
// arrays to store the data
double LipConst=10;
double *x, *XData, *YData;

// arrays to store the data
x=(double*)malloc(dim*sizeof(double));
XData=(double*)malloc(dim*npts*sizeof(double));
YData=(double*)malloc(npts*sizeof(double));

for(i=0;i<npts;i++) {
for(j=0;j<dim;j++) // generate random data in [0,3]^m
XData[i*dim + j]=x[j]=random(3.0,0);

YData[i]=fun(x); // some function values
}
double w,s
for(j=0;j<dim;j++) x[j]=random(3.0,0); // some random x

// compute the Lipschitz constant in max-norm
LipIntInfComputeLipschitz(&dim,&npts, XData, YData);

// calculate the value
w=LipIntInfValue(&dim,&npts,x,XData, YData);

// the same in Euclidean norm, but using local Lipschitz values
LipIntComputeLocalLipschitz(&dim,&npts, XData, YData);

// calculate the value
w=LipIntValueLocal(&dim,&npts,x,XData, YData);

// now using fast method and simplicial distance
STCSetLipschitz(&LipConst); // supply Lipschitz constant

// suppy the data
STCBuildLipInterpolant(&dim,&npts,XData,YData);
w=STCValue(x); // calculate the value

}
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4.1.2 Smoothing

LibLip implements smoothing of the data, presumably given with some
noise, subject to the required Lipschitz condition. It makes the data con-
sistent with a given Lipschitz constant, by adjusting the data values. The
l1-norm of the changes to the data is minimized using linear programming.

As a result, the user obtains a modified data set, consistent with the
required Lipschitz condition (as well as specified monotonicity constraints, if
any). These data can be subsequently interpolated.

#include "LibLipc.h"
int dim=4; // the dimension and size of the data set
int npts=200;

void main(int argc, char *argv[]){
double LipConst=4;
double *x, *XData, *YData, *TData;

// arrays to store the data
x=(double*)malloc(dim*sizeof(double));
XData=(double*)malloc(dim*npts*sizeof(double));
YData=(double*)malloc(npts*sizeof(double));
TData=(double*)malloc(npts*sizeof(double));

SLipInt LipInt;
for(i=0;i<npts;i++) {
for(j=0;j<dim;j++) // generate random data in [0,3]^m
XData[i*dim + j]=x[j]=random(3.0,0);

YData[i]=fun(x)+ 0.1*random(-1.0,1.0); // noisy function values
}

LipInt.SmoothLipschitz(dim, npts,XData,YData,TData,LipConst);
// other possibilities:
// LipInt.SmoothLipschitzCons(dim, npts,Cons, XData,YData,TData,LipConst);
// LipInt.SmoothLipschitzW(dim, npts,XData,YData,TData,LipConst,W);
// LipInt.ComputeLipschitzCV(dim, npts,XData,YData,TData);
// etc...

for(j=0;j<dim;j++) x[j]=random(3.0,0); // some random x
// calculate the approximation at x
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w=LipInt.Value(dim,npts,x,XData, TData, LipConst);

// prepare data for the fast method using simplicial distance
SLipIntInf LipIntInf;
STCInterpolant STCLipInt;
LipIntInf.SmoothLipschitzSimp(dim, npts,XData,YData,TData,LipConst);

STCLipInt.SetData(dim,npts, XData,TData);
STCLipInt.SetConstants(LipConst); // supply Lipschitz constant
STCLipInt.Construct(); // construct the interpolant

double w,s,x1[10]; // reserve space for at least dim+1 components
for(j=0;j<dim;j++) x1[j]=random(3.0,0); // some random x
w=STCLipInt.Value(dim,x1); // calculate the value

}
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// example of usage of STCInterpolant class and smoothened data
#include "LibLipc.h"
int dim=3; // the dimension and size of the data set
int npts=1000;

void main(int argc, char *argv[]){
double LipConst=2.5;
double *x, *XData, *YData, *TData;

// arrays to store the data
x=(double*)malloc(dim*sizeof(double));
XData=(double*)malloc(dim*npts*sizeof(double));
YData=(double*)malloc(npts*sizeof(double));
TData=(double*)malloc(npts*sizeof(double));

STCInterpolant LipInt;
SLipIntInf LipIntInf;
for(i=0;i<npts;i++) {
for(j=0;j<dim;j++) // generate random data in [0,3]^m
XData[i*dim + j]=x[j]=random(3.0,0);

YData[i]=fun(x); // some function values
}

// smoothen the data
LipIntInf.SmoothLipschitzSimp(dim,npts,XData,YData,TData,LipConst);

// supply the smoothened data (TData, not YData)
LipInt.SetData(dim,npts, XData,TData,0);
LipInt.SetConstants(LipConst); // supply Lipschitz constant
LipInt.Construct(); // construct the interpolant
free(XData); free(YData); free(TData);// may now destroy the data

double w,s,x1[10]; // reserve space for at least dim+1 components
for(j=0;j<dim;j++) x1[j]=random(3.0,0); // some random x
w=LipInt.Value(dim,x1); // calculate the value

// alternatively, pre-compute the slack variable
for(s=0,j=0; j<dim; j++) s+=x1[j];
x1[dim]= 1.0-s;
w=LipInt.Value(dim+1,x1); // calculate the value
LipInt.FreeMemory(); // destroys the interpolant

}
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4.2 Linking

To link against LibLip library use options -llip -glpk . It is assumed
you have installed the additional package glpk, version 4.8. See example
makefiles.

If you downloaded the precompiled version of LibLip, this package will
contain precompiled glpk library.

Note for Windows users: On Windows platform, the binaries (the .lib
and .dll files) incorporate glpk. LibLip is distributed as a DLL file and the
corresponding LIB file called liblipdll.dll and liblipdll.lib. In your
project settings, choose LINK option and add liblipdll.lib. Ensure that
the liblipdll.dll file is in the same directory as your main program, or on
the path. See the readme file coming with your distribution.

liblipdll.dll is compiled using stdcall option. The examples and
user’s calling programs should be compiled with this option as well. In Visual
C++ compilers stdcall is not the default option. The user needs to
manually change the project settings (in Project->Settings->C/C++->Code

generation to from Microsoft-specific cdecl to standard stdcall calling
convention. The same can be done by using flag \Gz in the make file.

4.3 Fortran interface

It is possible to call subroutines from LibLip library from FORTRAN. There
are some programming tricks however, necessary for calling C/C++ functions
from Fortran.

Firstly, by default Fortran compilers automatically add an underscore
” ” at the end of function names, this can be disabled with a compilation
switch (e.g.,-fno-underscoring in g77) compilation flag in your make file,
see examples.

Secondly, Fortran passes all parameters by reference, not by value.
Thirdly, linking a fortran program with C++ library sometimes requires
a wrapper, which makes the main program being declared in C and not in
Fortran code.
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4.4 Tips

It is a common problem when the user incorrectly sets the Lipschitz constant
for his/her particular case. The value LipConst=10 in the examples is for
the sake of example only. The user must use their own values, which depend
on the data and problem at hand.

The class SLipInt will accept a lower value of the Lipschitz constant,
but in this case the data will not be interpolated. This may help to smooth
the data (to filter out some outliers), but for proper smoothing, the relevant
smoothing methods should be used (see the description of the class and
examples).

The class STCInterpolant will not tolerate low values of the Lipschitz
constant. The algorithm may fail to build the internal data structures, and
to properly compute the value of the interpolant.

The user is advised to check the value of LastError() member function
after calling Construct(). Nonzero error code will indicate too low value of
the Lipschitz constant, incompatible with the data.

If the value of the Lipschitz constant is unknown, the user is advised to
compute it from the data using ComputeLipschitz(), or ComputeLipschitzSplit(),
or ComputeLipschitzCV().

The smoothing methods become computationally expensive for N >
500, and the user is advised to estimate the running time on some examples.

To obtain a smoother interpolant, we advise to use ComputeLocalLipschitz..()
and ValueLocal..() methods. In this case the Lipschitz constant will be
computed locally (i.e., it will depend on the position x). Some functions may
have large gradients at some points, and small gradients on the rest of the
domain. Using one (large) Lipschitz constant may be inappropriate in these
cases.

We also advise to ensure that the data are not repeated, as this may
upset the preprocessing algorithm. An option to remove repeated data could
be used in the SetData() method.

4.5 Performance of the algorithms

The table below illustrates the performance of the LibLip library on test data
sets. Measurements were performed on a modest workstation with Pentium
VI processor (1.2GHz) and 512 MB of RAM. The table indicates the range
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of applicability of the algorithms. Exhaustive evaluation does not require
preprocessing, but the evaluation time grows as O(N). The fast evaluation
method requires preprocessing, but the evaluation time grows as O(log N).
However, for higher dimension exhaustive evaluation may prove to be more
efficient. Comparison of the last two columns indicates when the exhaus-
tive evaluation is preferable. Note that classes SLipInt and SLipIntInf

perform exhaustive evaluation only, but are more flexible in accommodating
constraints.

The user should be aware of the limitations of LibLip due to hardware
constraints. The fast evaluation method requires enumeration of local optima
of the lower and upper interpolants, and their number can grow as O(Nd).
For d > 4 and large N , the method can easily occupy all the available RAM.
Therefore it is advisable to estimate memory requirements for a particular
problem before calling Construct method. Table 1 gives an idea of what are
typical memory requirements for d = 2, . . . , 5. The row with the largest N
corresponds to approximately 500MB of RAM requested by LibLip.

In case of a larger data set or higher dimension, we advise to use the class
SLibInt, or perform explicit evaluation by calling
STCInterpolant::ConstructExplicit.

We would like to emphasize that proper scaling of the data is important.
While none of the algorithms relies on a particular range of the data, there
are issues that arise in the implementation of the algorithm, such as finite
precision of floating point numbers. Thus we recommend scaling the data
abscissae to a reasonable range, like [0, 100]d or [−1, 1]d, as well as the data
values. Scaling will affect the Lipschitz constant, which must be adjusted
accordingly.
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preprocessing evaluation explicit evaluation
d N time(s) time (s× 10−3) (s× 10−3)

Construct() Value() ValueExplicit()
2 1000 0.03 0.10 0.32

10000 0.48 0.16 3.2
20000 1.19 0.18 6.3
40000 2.78 0.22 13.0
80000 6.09 0.25 26.1

160000 13.8 0.29 52.1
320000 31.3 0.40 104.4
640000 70.6 0.53 208.9

1280000 152.2 0.68 419.1
3 1000 0.17 0.72 0.38

10000 2.81 1.20 3.6
20000 6.67 1.46 7.1
40000 15.69 1.55 14.3
80000 35.57 1.61 27.8

160000 81.7 1.87 56.1
320000 184.0 2.21 119.8

4 1000 0.78 2.37 0.44
5000 7.29 4.59 2.04

10000 18.2 5.89 3.9
20000 45.3 7.42 8.1
40000 110.0 9.18 16.1
80000 245.1 12.2 33.0

5 1000 4.66 15.0 0.48
5000 54.08 36.8 2.7

10000 149.7 47.0 5.3

Table 1. Performance of the algorithms from LibLip as a function of the
number of data points and dimension. Explicit evaluation refers to directly
using Eq.(2.2) in computations, whose complexity grows linearly with N .
For every d, the row with the largest N is when the library has used 500 MB
of RAM.
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Chapter 5

Where to get help

The software library LibLip and its components, are distributed by G.Beliakov
AS IS, with no warranty, explicit or implied, of merchantability or fitness for
a particular purpose. G.Beliakov will provide limited technical support for
a period of 60 days after purchase, by electronic media. G.Beliakov, at its
sole discretion, may provide advice to registered users on the proper use of
LibLip and its components.

Any queries regarding technical information, sales and licensing should
be directed to gleb@deakin.edu.au.
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