[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20. Regression testing

The standard purpose of regression testing is to avoid getting the same bug twice. When a bug is found, the programmer fixes the bug and adds a test to the test suite. The test should fail before the fix and pass after the fix. When a new version is about to be released, all the tests in the regression test suite are run and if an old bug reappears, this will be seen quickly since the appropriate test will fail.

The regression testing in GNU Go is slightly different. A typical test case involves specifying a position and asking the engine what move it would make. This is compared to one or more correct moves to decide whether the test case passes or fails. It is also stored whether a test case is expected to pass or fail, and deviations in this status signify whether a change has solved some problem and/or broken something else. Thus the regression tests both include positions highlighting some mistake being done by the engine, which are waiting to be fixed, and positions where the engine does the right thing, where we want to detect if a change breaks something.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20.1 Regression testing in GNU Go

Regression testing is performed by the files in the ‘regression/’ directory. The tests are specified as GTP commands in files with the suffix ‘.tst’, with corresponding correct results and expected pass/fail status encoded in GTP comments following the test. To run a test suite the shell scripts ‘test.sh’, ‘eval.sh’, and ‘regress.sh’ can be used. There are also Makefile targets to do this. If you make all_batches most of the tests are run. The Pike script ‘regress.pike’ can also be used to run all tests or a subset of the tests.

Game records used by the regression tests are stored in the directory ‘regression/games/’ and its subdirectories.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20.2 Test suites

The regression tests are grouped into suites and stored in files as GTP commands. A part of a test suite can look as follows:

 
# Connecting with ko at B14 looks best. Cutting at D17 might be
# considered. B17 (game move) is inferior.
loadsgf games/strategy25.sgf 61
90 gg_genmove black
#? [B14|D17]

# The game move at P13 is a suicidal blunder.
loadsgf games/strategy25.sgf 249
95 gg_genmove black
#? [!P13]

loadsgf games/strategy26.sgf 257
100 gg_genmove black
#? [M16]*

Lines starting with a hash sign, or in general anything following a hash sign, are interpreted as comments by the GTP mode and thus ignored by the engine. GTP commands are executed in the order they appear, but only those on numbered lines are used for testing. The comment lines starting with #? are magical to the regression testing scripts and indicate correct results and expected pass/fail status. The string within brackets is matched as a regular expression against the response from the previous numbered GTP command. A particular useful feature of regular expressions is that by using ‘|’ it is possible to specify alternatives. Thus B14|D17 above means that if either B14 or D17 is the move generated in test case 90, it passes. There is one important special case to be aware of. If the correct result string starts with an exclamation mark, this is excluded from the regular expression but afterwards the result of the matching is negated. Thus !P13 in test case 95 means that any move except P13 is accepted as a correct result.

In test case 100, the brackets on the #? line is followed by an asterisk. This means that the test is expected to fail. If there is no asterisk, the test is expected to pass. The brackets may also be followed by a ‘&’, meaning that the result is ignored. This is primarily used to report statistics, e.g. how many tactical reading nodes were spent while running the test suite.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20.3 Running the Regression Tests

./test.sh blunder.tst runs the tests in ‘blunder.tst’ and prints the results of the commands on numbered lines, which may look like:

 
1 E5
2 F9
3 O18
4 B7
5 A4
6 E4
7 E3
8 A3
9 D9
10 J9
11 B3
12 C6
13 C6

This is usually not very informative, however. More interesting is ./eval.sh blunder.tst which also compares the results above against the correct ones in the test file and prints a report for each test on the form:

 
1 failed: Correct '!E5', got 'E5'
2 failed: Correct 'C9|H9', got 'F9'
3 PASSED
4 failed: Correct 'B5|C5|C4|D4|E4|E3|F3', got 'B7'
5 PASSED
6 failed: Correct 'D4', got 'E4'
7 PASSED
8 failed: Correct 'B4', got 'A3'
9 failed: Correct 'G8|G9|H8', got 'D9'
10 failed: Correct 'G9|F9|C7', got 'J9'
11 failed: Correct 'D4|E4|E5|F4|C6', got 'B3'
12 failed: Correct 'D4', got 'C6'
13 failed: Correct 'D4|E4|E5|F4', got 'C6'

The result of a test can be one of four different cases:

If you want a less verbose report, ./regress.sh . blunder.tst does the same thing as the previous command, but only reports unexpected results. The example above is compressed to

 
3 unexpected PASS!
5 unexpected PASS!
7 unexpected PASS!

For convenience the tests are also available as makefile targets. For example, make blunder runs the tests in the blunder test suite by executing eval.sh blunder.tst. make all_batches runs all test suites in a sequence using the regress.sh script.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20.4 Running regress.pike

A more powerful way to run regressions is with the script ‘regress.pike’. This requires that you have Pike (http://pike.ida.liu.se) installed.

Executing ./regress.pike without arguments will run all testsuites that make all_batches would run. The difference is that unexpected results are reported immediately when they have been found (instead of after the whole file has been run) and that statistics of time consumption and node usage is presented for each test file and in total.

To run a single test suite do e.g. ./regress.pike nicklas3.tst or ./regress.pike nicklas3. The result may look like:

 
nicklas3                                 2.96    614772    3322      469
Total nodes: 614772 3322 469
Total time: 2.96 (3.22)
Total uncertainty: 0.00

The numbers here mean that the test suite took 2.96 seconds of processor time and 3.22 seconds of real time. The consumption of reading nodes was 614772 for tactical reading, 3322 for owl reading, and 469 for connection reading. The last line relates to the variability of the generated moves in the test suite, and 0 means that none was decided by the randomness contribution to the move valuation. Multiple testsuites can be run by e.g. ./regress.pike owl ld_owl owl1.

It is also possible to run a single testcase, e.g. ./regress.pike strategy:6, a number of testcases, e.g. ./regress.pike strategy:6,23,45, a range of testcases, e.g. ./regress.pike strategy:13-15 or more complex combinations e.g. ./regress.pike strategy:6,13-15,23,45 nicklas3:602,1403.

There are also command line options to choose what engine to run, what options to send to the engine, to turn on verbose output, and to use a file to specify which testcases to run. Run ./regress.pike --help for a complete and up to date list of options.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20.5 Viewing tests with Emacs

To get a quick regression view, you may use the graphical display mode available with Emacs (see section GNU Go mode in Emacs). You will want the cursor in the regression buffer when you enter M-x gnugo, so that GNU Go opens in the correct directory. A good way to be in the right directory is to open the window of the test you want to investigate. Then you can cut and past GTP commands directly from the test to the minibuffer, using the : command from Emacs. Although Emacs mode does not have a coordinate grid, you may get an ascii board with the coordinate grid using : showboard command.


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20.6 HTML Regression Views

Extremely useful HTML Views of the regression tests may be produced using two perl scripts ‘regression/regress.pl’ and ‘regression/regress.plx’.

  1. The driver program (regress.pl) which:
  2. The interface to view the captured output (regress.plx) which:

[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

20.6.1 Setting up the HTML regression Views

There are many ways configuring Apache to permit CGI scripts, all of them are featured in Apache documentation, which can be found at http://httpd.apache.org/docs/2.0/howto/cgi.html

Below you will find one example.

This documentation assumes an Apache 2.0 included in Fedora Core distribution, but it should be fairly close to the config for other distributions.

First, you will need to configure Apache to run CGI scripts in the directory you wish to serve the html views from. In ‘/etc/httpd/conf/httpd.conf’ there should be a line:

DocumentRoot "/var/www/html"

Search for a line <Directory "/path/to/directory">, where /path/to/directory is the same as provided in DocumentRoot, then add ExecCGI to list of Options. The whole section should look like:

 
<Directory "/var/www/html">
...
    Options ... ExecCGI
...
</Directory>

This allows CGI scripts to be executed in the directory used by regress.plx. Next, you need to tell Apache that ‘.plx’ is a CGI script ending. Your ‘httpd.conf’ file should contain a line:

AddHandler cgi-script ...

If there isn’t already, add it; add ‘.plx’ to the list of extensions, so line should look like:

AddHandler cgi-script ... .plx

You will also need to make sure you have the necessary modules loaded to run CGI scripts; mod_cgi and mod_mime should be sufficient. Your ‘httpd.conf’ should have the relevant LoadModule cgi_module modules/mod_cgi.so and LoadModule mime_module modules/mod_mime.so lines; uncomment them if necessary.

Next, you need to put a copy of ‘regress.plx’ in the DocumentRoot directory /var/www/html or it subdirectories where you plan to serve the html views from.

You will also need to install the Perl module GD (http://search.cpan.org/dist/GD/), available from CPAN.

Finally, run ‘regression/regress.pl’ to create the xml data used to generate the html views (to do all regression tests run ‘regression/regress.pl -a 1’); then, copy the ‘html/’ directory to the same directory as ‘regress.plx’ resides in.

At this point, you should have a working copy of the html regression views.

Additional notes for Debian users: The Perl GD module can be installed by apt-get install libgd-perl. It may suffice to add this to the apache2 configuration:

 
<Directory "/var/www/regression">
	Options +ExecCGI
	AddHandler cgi-script .plx
	RedirectMatch ^/regression$ /regression/regress.plx
</Directory>

and then make a link from ‘/var/www/regression’ to the GNU Go regression directory. The RedirectMatch statement is only needed to set up a shorter entry URL.


[ << ] [ >> ]           [Top] [Contents] [Index] [ ? ]

This document was generated by root on November 12, 2019 using texi2html 1.82.