
btt User Guide

Alan D. Brunelle (Alan.Brunelle@hp.com)

8 October 2009

1 Introduction

btt is a post-processing tool for the block layer IO tracing tool called blktrace.
As noted in its Users Guide, blktrace

is a block layer IO tracing mechanism which provides detailed
information about request queue operations up to user space.

blktrace is capable of producing tremendous amounts of output in the form
of multiple individual traces per IO executed during the traced run. It is also
capable of producing some general statistics concerning IO rates and the like.
btt goes further and produces a variety of overall statistics about each of the
individual handling of IOs, and provides data we believe is useful to plot to
provide visual comparisons for evaluation.

This document will discuss btt usage, provide some sample output, and also
show some interesting plots generated from the data provided by the btt utility.

A short note on the ordering of this document – the actual command-line
usage section occurs relatively late in the document (see section 12), as we felt
that discussing some of the capabilities and output formats would make the
parameter discussion easier.

This document refers to the output formats generated by btt version 2.00.
However, the descriptions are general enough to cover output formats prior to
that.

1

Contents

1 Introduction 1

2 Getting Started 3

3 Output Overview 4

4 Data Files Output 11

5 Activity Data File 12

6 Histogram Data Files 14

7 Running Stats Files 16

8 iostat Data File 17

9 Per-IO Data File 18

10 Latency Data Files 20

11 Seek Data Files 21
11.1 Seeks Per Second . 23

12 Command Line 24
12.1 --seek-absolute/-a . 24
12.2 --all-data/-A . 24
12.3 --dump-blocknos/-B . 25
12.4 --range-delta/-d . 25
12.5 --devices/-D . 25
12.6 --exes/-e . 25
12.7 --help/-h . 25
12.8 --input-file/-i . 25
12.9 --iostat/-I . 26
12.10--d2c-latencies/-l . 26
12.11--periodic-latencies/-L . 26
12.12--seeks-per-second-m . 26
12.13--dev-maps/-M . 26
12.14--output-file/-o . 26
12.15--per-io-dump/-p . 26
12.16--per-io-tress/-P . 26
12.17--q2c-latencies/-q . 26
12.18--active-queue-depth/-Q . 27
12.19--no-remaps/-r . 27
12.20--seeks/-s . 27
12.21--iostat-interval/-S . 27

2

12.22--time-start/-t and --time-end/T 27
12.23--unplug-hist/-u . 27
12.24--version/-V . 28
12.25--verbose/-v . 28
12.26--easy-parse-avgs/-X . 28
12.27--q2d-latencies/-z . 30
12.28--q2d-latencies/-Z . 30

13 bno plot.py 31

14 Sample btt Output 34

3

2 Getting Started

The simple pipeline to get going with btt is to perform the following steps:

1. Run blktrace, specifying whatever devices and other parameters you
want. You must save the traces to disk in this step, btt does not work in
live mode.

2. After tracing completes, run blkrawverify, specifying all devices that
were traced (or at least on all devices that you will use btt with – sec-
tion 12.5 shows how you can dictate which devices to use with btt). If
blkrawverify finds errors in the trace streams saved, it is best to recap-
ture the data – utilizing btt on unclean trace files produces inconsistent
results.

While this step is optional, we have found that performing this helps to
ensure data coming from btt makes the most sense.

3. Run blkparse with the -d option specifying a file to store the combined
binary stream. (e.g.: blkparse -d bp.bin ...).

blktrace produces a series of binary files containing parallel trace streams
– one file per CPU per device. blkparse provides the ability to combine
all the files into one time-ordered stream of traces for all devices.

4. Run btt specifying the file produced by blkparse utilizing the -i option
(e.g.: btt -i bp.bin ...).

4

3 Output Overview

The major default areas of output provided by btt include:

average component times across all IOs The time line of each IO is bro-
ken down into 3 major regions:

1. Time needed to insert or merge an incoming IO onto the request
queue. This is the average time from when the IO enters the block
IO layer (queue trace) until it is inserted (insert trace).

This is denoted as Q2I time.

This is also broken down into two component times1:

Q2G Time needed to get a request (get request trace).

G2I Time needed to put that request onto the request queue (insert
trace).

For merged requests – an incoming request that is merged with a
previously submitted request – we calculate Q2M, the amount of
time between the queue trace and the merge trace.

2. Time spent on the request queue. The average time from when the
IO is inserted or merged onto the request queue, until it is issued
(issue trace) to the lower level driver.

Referred to as I2D time2.

3. Driver and device time – the average time from when the actual IO
was issued to the driver until is completed (completion trace) back
to the block IO layer.

This is referred to as the D2C time

Two other sets of results are presented in this section:

1. Q2Q which measures the time between queue traces in the system.
This provides some idea as to how quickly IOs are being handed to
the block IO layer.

2. Q2C which measures the times for the complete life cycle of IOs
during the run3

1On occasion there are also some time spent sleeping waiting for a request. That occurs
between the Q and G operations. You will see these listed as S2G times.

2The issue trace is represented by a D in the blkparse output, hence its usage in btt to
refer to issue traces. Note that an I is used to refer to insert traces.

3One of the areas that needs some work in btt is to better understand the multiplex nature
of IOs during a run. In theory, one would like Q2I + I2D +D2C = Q2C however, typically
there are multiple queue traces that are combined via merges into a single IO issued and
completed. We currently average the queue-to-insert and queue-to-merge times, and thus
tend to be quite close to the expected equation.

5

For each row in this output, we provide a minimum, average, maximum
(which are all presented in seconds), and overall count. As an example4:

ALL MIN AVG MAX N

---- ------------- ------------- ------------- -----------

Q2Q 0.000000058 0.000012761 9.547941661 2262310

Q2I 0.000000272 0.000005995 0.104588839 2262311

I2D 0.000001446 0.094992714 0.239636864 2262311

D2C 0.000193721 0.030406554 1.634221408 2262311

Q2C 0.000207665 0.125405263 1.830917198 2262311

When tracking device mapper devices, we also break down the Q2A and
Q2C times for those IOs.

Device Overhead Using the data from the previous chart, we can then pro-
vide some idea as to where IO spend most of the time on average. The
following output shows the percentage of time spent in each of the phases
of an IO5

DEV | Q2G G2I Q2M I2D D2C

---------- | --------- --------- --------- --------- ---------

(8, 80) | 0.0013% 0.0004% 0.0006% 88.5005% 11.4988%

---------- | --------- --------- --------- --------- ---------

Overall | 0.0003% 0.0001% 0.0041% 21.4998% 78.4958%

Device Merge Information A key measurement when making changes in the
system (software or hardware) is to understand the block IO layer ends
up merging incoming requests into fewer, but larger, IOs to the underlying
driver. In this section, we show the number of incoming requests (Q), the
number of issued requests (D) and the resultant ratio. We also provide
values for the minimum, average and maximum IOs generated.

Looking at the following example:

DEV | #Q #D Ratio | BLKmin BLKavg BLKmax Total

---------- | ------- ----- ----- | ------ ------ ------ -------

(68, 64) | 2262311 18178 124.5 | 2 124 128 2262382

4As with this display, the author has taken some liberty in reformatting the output for
better display on the printed page.

5It should be noted that incoming requests either go through:

1. Q2G + Q2I

or

2. Q2M

before proceeding to I2D and D2C.

6

we see that (on average) the block IO layer is combining upwards of 125
incoming requests into a single request down the IO stack. The resultant
average IO size is 124 blocks.

Device Seek Information Another useful measure is the variability in the
sector distances between consecutively received – queued and submitted –
issued IOs. The next two sections provides some rudimentary statistics
to gauge the general nature of the sector differences between IOs. Values
provided include the number of seeks (number of IOs submitted to lower
level drivers), the mean distance between IOs, the median value for all
seeks, and the mode - the value(s) and the counts are provided for the
latter.

The first of the two sections displays values for Q2Q seek distances –
providing a set of indicators showing how close incoming IO requests are
to each other. The second section shows D2D seek distances – providing
a set of indicators showing how close the IO requests are that are handled
by underlying drivers.

DEV | NSEEKS MEAN MEDIAN | MODE

--------- | ------ ------- ------ | -------

(68, 64) | 18178 19611.3 0 | 0(17522)

We have almost exclusively seen median and mode values of 0, indicating
that seeks tend to have an equal amount of forward and backwards seeks.
The larger the count for the mode in comparison to the total number of
seeks is indicative as to how many IOs are coming out of the block IO layer
in adjacent sectors. (Obviously, the higher this percentage, the better the
underlying subsystems can handle them.)

Request Queue Plug Information During normal operation, requests queues
are plugged and during such times the IO request queue elements are not
able to be processed by underlying drivers. The next section shows how
often the request queue was in such a state.

DEV | # Plugs # Timer Us | % Time Q Plugged

--------- | ------- ---------- | ----------------

(68, 64) | 833(0) | 0.356511895%

There are two major reasons why request queues are unplugged, and both
are represented in the above table.

1. Explicit unplug request from some subsystem in the kernel.

2. Timed unplugs, due to a request queue exceeding some temporal
limit for being plugged.

The total number of unplugs is equal to the number of plugs less the ones
due to timer unplugs.

7

IOs per Unplug & Unplugs-due-to-timeout In this subsection one can see
the average number of IOs on the request queue at the time of an unplug
or unplug due to a timeout. The following sample shows a sample of both
unplug sections:

==================== Plug Information ====================

DEV | # Plugs # Timer Us | % Time Q Plugged

---------- | ---------- ---------- | ----------------

(8, 0) | 1171(123) | 0.280946640%

(8, 32) | 4(0) | 0.000325469%

---------- | ---------- ---------- | ----------------

Overall | # Plugs # Timer Us | % Time Q Plugged

Average | 587(61) | 0.140636055%

DEV | IOs/Unp IOs/Unp(to)

---------- | ---------- ----------

(8, 0) | 9.2 8.8

(8, 32) | 2.5 0.0

---------- | ---------- ----------

DEV | IOs/Unp IOs/Unp(to)

Overall | 9.2 8.8

This table and the preceding one have to be considered together – in the
sample output in the immediately preceding table one can see how the
larger number of data values for device (8,0) dominates in the overall
average.

8

Active Requests At Q Information An important consideration when an-
alyzing block IO schedulers is to know how many requests the scheduler
has to work with. The metric provided in this section details how many
requests (on average) were being held by the IO scheduler when an in-
coming IO request was being handled. To determine this, btt keeps track
of how many Q requests came in, and subtracts requests that have been
issued (D).

Here is a sample output of this sections:

==================== Active Requests At Q Information ====================

DEV | Avg Reqs @ Q

---------- | -------------

(65, 80) | 12.0

(65,240) | 16.9

...

(66,112) | 44.2

---------- | -------------

Overall | Avgs Reqs @ Q

Average | 17.4

I/O Active Period Information In this subsection data is tabulated show-
ing I/O activity on a per-device as well across all devices being traced.
“I/O activity” is defined as periods of time when the underlying device
driver and device have at least one I/O to work upon. The values pre-
sented include:

Live Number of periods of “liveness.”

Avg. Act Average length of each period ov “liveness.”

Avg. !Act Aerage length of each non-active period.

% Live Percent of total time spent with the driver/device active.

Here is a sample portion of this type of chart:

DEV | # Live Avg. Act Avg. !Act % Live

---------- | ---------- ------------- ------------- ------

(8, 16) | 29 0.909596815 0.094646263 90.87

(8, 32) | 168 0.097848226 0.068231948 59.06

---------- | ---------- ------------- ------------- ------

Total Sys | 33 0.799808811 0.082334758 90.92

For information on generating data files that can be plotted with per-
device and system-wide I/O activity see section 12.28.

9

Detailed Data

In addition to the default sections output, if one supplies the --all-data or -A
argument (see section 12.2) to btt further sections are output:

Per Process As traces are emitted, they are tagged with the process ID of
the currently running thread in the kernel. The process names are also
preserved, and mapped to the ID. For each of the parts of the time line
discussed above on page 4, a chart is provided which breaks down the
traces according to process ID (name).

One must be aware, however, that the process ID may not have anything
to do with the originating IO. For example, if an application is doing
buffered IO, then the actual submitted IOs will most likely come from
some page buffer management daemon thread (like pdflush, or kjournald
for example). Similarly, completion traces are rarely (if ever?) going to
be associated with the process which submitted the IO in the first place.

Here is a sample portion of this type of chart, showing Q2Q times per
process:

Q2Q MIN AVG MAX N

------------- ----------- ----------- ----------- -------

mkfs.ext3 0.000000778 0.000009074 1.797176188 1899371

mount 0.000000885 0.000672513 0.030638128 73

pdflush 0.000000790 0.000006752 0.247231307 179791

Per Process Averages The average columns from the above charts, are also
presented in their own chart.

Per Device Similar to the per-process display, btt will also break down the
various parts of an IOs time line based upon a per-device criteria. Here’s
a portion of this area, displayed showing the issued to complete times
(D2C).

D2C MIN AVG MAX N

--------- ----------- ----------- ----------- ------

(65, 80) 0.000140488 0.001076906 0.149739869 169112

(65, 96) 0.000142762 0.001215221 0.173263182 155488

(65,112) 0.000145221 0.001254966 0.124929936 165726

(65,128) 0.000141896 0.001159596 0.775231052 169015

(65,144) 0.000140832 0.001290985 0.211384698 210661

(65,160) 0.000139915 0.001175554 0.073512063 133973

(65,176) 0.000141254 0.001104870 0.073231310 145764

(65,192) 0.000141453 0.001234460 0.167622507 140618

...

Per Device Averages The average columns from the above charts, are also
presented in their own chart.

10

Q2D Histogram A display of histogram buckets for the Q to D times – basi-
cally, from where an IO enters the block IO layer for a given device, and
when it is dispatched. The buckets are arranged via the time in seconds,
as in:

==================== Q2D Histogram ====================

DEV | <.005 <.010 <.025 <.050 <.075 <.100 <.250 <.500 < 1.0 >=1.0

--------- | ===== ===== ===== ===== ===== ===== ===== ===== ===== =====

(66, 80) | 61.2 7.9 12.1 7.9 3.0 1.4 1.5 0.2 0.0 4.6

(65,192) | 42.3 5.0 8.7 30.0 8.9 3.0 1.8 0.1 0.0 0.1

(65,128) | 34.3 5.3 8.9 32.0 9.7 3.7 5.3 0.6 0.0 0.1

...

(65, 64) | 59.9 4.2 6.0 24.6 4.2 0.8 0.1 0.0 0.0 0.1

(66, 64) | 62.6 8.1 12.7 7.9 2.4 0.6 0.1 0.0 0.0 5.4

========== | ===== ===== ===== ===== ===== ===== ===== ===== ===== =====

AVG | 52.9 6.2 10.0 20.1 5.3 1.7 1.4 0.2 0.0 2.1

11

4 Data Files Output

Besides the averages output by default, the following 5(+) files are also created
with data points which may be plotted.

file.dat This file provides a notion of activity for the system, devices and pro-
cesses. The details of this file are provided in section 5.

file qhist.dat Provides histogram data for the size of incoming IO requests,
for more information see section 6.

file dhist.dat Provides histogram data for the size of IO requests submitted
to lower layer drivers, for more information see section 6.

file mbps fp.dat Provides a set of data for mb-per-second values each second
- for more information see section 7.

file iops fp.dat Provides a set of data for I/Os-per-second values each second
- for more information see section 7.

In addition to the default data files output, there are optional data files
which can be generated by btt. These include:

subset of .avg data, easily parsed When the -X option is specified and the
-o has also been specified, then a subset of the data produced by default
is copied to another file that is more easily parsed. Refer to section 12.26
for full details.

iostat iostat-like data can be distilled by btt, and is described in section 8.

per IO detail Each and every IO traced can be output in a form that shows
each of the IO components on consecutive lines (rather than grepping
through a blkparse output file for example). The details on this file is
included in section 9.

iostat Latency information – both Q2d, D2c and Q2C – on a per-IO basis can
be generated. These are described in section 10.

seek details A set of data files containing all IO-to-IO sector differences can
be output, with details found in section 11.

unplug histogram details A data file per device containing histogram output
for the amount of IOs released at unplug time. Section 12.23 has more
details.

12

5 Activity Data File

The activity data file contains a series of data values that indicate those periods
of time when queue and complete traces are being processed. The values happen
to be in a format easily handled by xmgrace6, but is easy to parse for other
plotting and/or analysis programs.

The file is split into pairs of sets of data points, where each pair contains a
set of queue activity and a set of completion activity. The points are presented
with the first column (X values) being the time (in seconds), and the second
column (Y values) providing an on/off type of setting. For each pair, the Y
values have two settings off (low) and on (high). For example, here is a snippet
of a file showing some Q activity:

Total System

Total System : q activity

0.000000000 0.0

0.000000000 0.4

0.000070381 0.4

0.000070381 0.0

1.023482637 0.0

1.023482637 0.4

6.998746618 0.4

6.998746618 0.0

7.103336799 0.0

7.103336799 0.4

17.235419786 0.4

17.235419786 0.0

26.783361447 0.0

26.783361447 0.4

26.832454929 0.4

26.832454929 0.0

28.870431266 0.0

28.870431266 0.4

28.870431266 0.4

28.870431266 0.0

What this indicates is that there was q activity for the system from 0.000000000
through 0.000070381, but was inactive from there to 1.023482637, and so on.
Section 12.4 contains details on how to adjust btt’s notion of what constitutes
activity.

The pairs are arranged as follows:

• First there is the total system activity – meaning activity in either queue
or completion traces across all devices.

6http://plasma-gate.weizmann.ac.il/Grace/ “Grace is a WYSIWYG 2D plotting tool
for the X Window System and M*tif.”

13

• Next comes per-device activity information – for each device being traced,
that request queues Q and C traces are presented.

• Last we present pairs per-process.

Using this, one is then able to plot regions of activity versus inactivity – and
one can gather a sense of deltas between the queueing of IOs and when they are
completed. Figure 1 shows a very simplistic chart showing some activity:

0 1 2 3 4 5 6 7 8 9 10
Runtime (seconds)

Q activity
C activity

BTT Sample Q & C Activity

Figure 1: Simple Activity Chart

When the black line (system Q activity) is high, then the system is seeing
relatively continuous incoming queues. Conversely, when it is low, it represents
an extended period of time where no queue requests were coming in. Similarly
for the red line and C activity.

14

6 Histogram Data Files

The histogram data files provide information concerning incoming and outgoing
IO sizes (in blocks). For simplicity, the histogram buckets are one-for-one for
sizes up to 1,024 blocks in the IO, and then a single bucket for all sizes greater
than or equal to 1,024 blocks.

The files are again in grace-friendly format, with the first set containing data
for the first 1,023 buckets, and a separate set representing sizes ≥ 1024 blocks.
(This is done so that one can easily use a separate formatting specification for
the latter set.)

The first column (X values) is the various IO sizes, and the second column
(Y values) represents the number of IOs of that size.

Q Histogram Data File

Figure 2 is a sample graph generated from data used during some real-world
analysis7. With the visual representation provided by this, one can quickly
discern some different characteristics between the 3 runs – in particular, one
can see that there is only a single red point (representing 8 blocks per IO),
whereas the other two had multiple data points greater than 8 blocks.

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Blocks per IO

1 1
2 2
4 4
8 8

16 16
32 32
64 64

128 128
256 256
512 512

1024 1024
2048 2048
4096 4096
8192 8192

16384 16384
32768 32768
65536 65536

131072 131072
262144 262144
524288 524288

1048576 1048576
2097152 2097152
4194304 4194304

N
um

be
r

of
 I

O
s

(l
og

)

2.6.20
2.6.20-plug
2.6.20-plug-np

Q Histogram Chart - AIM7 FServer
4-way IA64 + 4xMSA1000 (w/ 12 disks per MSA)

Figure 2: Q Histogram

7Note the logarithmic nature of the Y axis for this chart.

15

D Histogram Data File

Figure 3 is a sample graph generated from data used during some real-world
analysis8. Again, visually, one can see that the black and blue dots are somewhat
similar below about 192 blocks per IO going out. And then one can make the
broad generalization of higher reds, lower blues and blacks in the middle.

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Blocks per IO

1 1

2 2

4 4

8 8

16 16

32 32

64 64

128 128

256 256

512 512

1024 1024

2048 2048

4096 4096

8192 8192

16384 16384

32768 32768

65536 65536

131072 131072

262144 262144

524288 524288

1048576 1048576

2097152 2097152

N
um

be
r

of
 I

O
S

(l
og

)

2.6.20
2.6.20-plug
2.6.20-plug-np

D Histogram Chart - AIM7 FServer
4-way IA64 + 4xMSA1000 (w/ 12 disks per MSA)

Figure 3: D Histogram

8Note the logarithmic nature of the Y axis for this chart.

16

7 Running Stats Files

There are two files produced for each of all devices being traced (prefixed with
sys) and per-device (prefixed with the device identifier).

The two files are for reporting I/O rate (I/Os per second - name ends with
iops fp.dat) and throughput (MiB per second - name ends with mbps fp.dat).

The data in the files has two columns:
File Type X values Y values
iops Runtime (seconds) I/Os per second
mbps Runtime (seconds) MiB per second

As an example:

ls *fp.dat

008,064_iops_fp.dat

008,064_mbps_fp.dat

sys_iops_fp.dat

sys_mbps_fp.dat

These can be plotted using various tools (e.g., xmgrace as in figure 4).

0 5 10 15 20 25
0

50

100

150

200

I/
O

s
Pe

r
Se

co
nd

Running Statistics: iSCSI Accesses
256KiB Direact Asynchronous I/O Reads

0 5 10 15 20 25
Runtime (seconds)

0

10

20

30

40

50

60

70

80

90

100

T
hr

ou
gh

pu
t (

M
iB

/s
ec

)

Figure 4: Running Stats

17

8 iostat Data File

btt attempts to produce the results from running an iostat -x command in
parallel with the system as it is being traced. The fields (columns) generated
by the --iostat or -I option can be seen from the following output snippet –
note that the line has been split to fit on the printed page:

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s

rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util Stamp

...

(8, 16) 0.00 0.00 0.00 1005.30 0.00 152806.36

0.00 76403.18 152.00 31.00 0.00 0.00 0.00 71.79

...

(8, 16) 1.02 5.80 0.34 1.07 4.03 55.62

2.02 27.81 42.13 0.61 0.00 21.90 0.00 TOTAL

Note that the STAMP field contains the runtime (in seconds) for that line
of data.

18

9 Per-IO Data File

btt can produce a text file containing time line data for each IO processed. The
time line data contains rudimentary information for the following stages:

• queue traces

• get request traces

• insert traces

• merge traces

• issue traces

• completion traces

• remap traces

The –per-io-dump or -p option triggers this behavior, and will produce a
file containing streams of IOs (separated by blank spaces). As an example,
here is a snippet of 4 IOs that were merged together, you will note there are 3
merged IOs, and 1 inserted in the stream. The issue and completion traces are
replicated per IO.

66,0 : 0.763283556 Q 6208+8

0.763300157 I 6208+8

0.763296365 G 6208+8

0.763338848 D 6208+32

0.763705760 C 6208+32

66,0 : 0.763314550 Q 6224+8

0.763315341 M 6224+8

0.763338848 D 6208+32

0.763705760 C 6208+32

66,0 : 0.763321010 Q 6232+8

0.763321775 M 6232+8

0.763338848 D 6208+32

0.763705760 C 6208+32

65,240: 0.763244173 Q 6216+8

0.763244974 M 6216+8

0.763374288 D 6208+32

0.763826610 C 6208+32

The columns provide the following information:

1. Device major/minor.

19

2. Time of the trace (seconds from the start of the run)

3. Trace type

4. start block + number of blocks

20

10 Latency Data Files

The latency data files which can be optionally produced by btt provide per-IO
latency information, one for queue time (Q2D), one for total IO time (Q2C)
and one for latencies induced by lower layer drivers and devices (D2C).

In both cases, the first column (X values) represent runtime (seconds), while
the second column (Y values) shows the actual latency for a command at that
time (either Q2D, D2C or Q2C).

21

11 Seek Data Files

btt can also produce two data files containing all IO-to-IO sector deltas, provid-
ing seek information which can then be plotted. The produced data file contains
3 sets of data:

1. Combined data – all read and write IOs

2. Read data – just seek deltas for reads

3. Write data – just seek deltas for writes

The format of the output file names is to have the name generated by the
following fields separated by underscores ():

• The prefix provided as the argument to the -s option.

• The major and minor numbers of the device separated by a comma.

• The string q2q or d2d, indicating the Q2Q or D2D seeks, respectively.

• One of the following characters:

r For read (device to system) IOs

w For write (system to device) IOs

c Combined – both read and write IOs

An example name would be after specifying -s seek would be: seek 065,048 q2q w.dat.
The format of the data is to have the runtime values (seconds since the

start of the run) in column 1 (X values); and the difference in sectors from the
previous IO in column 2 (Y values). Here is a snippet of the first few items from
a file:

Combined

0.000034733 35283790.0

0.000106453 35283790.0

0.005239009 35283950.0

0.006968575 35283886.0

0.007218709 35283694.0

0.012145393 35283566.0

0.014980835 -35848914.0

0.024239323 -35848914.0

0.024249402 -35848914.0

0.025707095 -35849072.0

...

Figure 5 shows a simple graph that can be produced which provides visual
details concerning seek patterns.

22

0 5 10 15 20
Runtime (seconds)

Se
ek

 M
ag

ni
tu

de

Reads
Writes

BTT Sample Seek Patterns

Figure 5: Seek Chart

The seek difference is calculated in one of two ways:

default By default, the seek distance is calculated as the closest distance be-
tween the previous IO and this IO. The concept of closeness means that it
could either be the end of the previous IO and the beginning of the next,
or the end of this IO and the start of the next.

-a If the -a or --seek-absolute option is specified, then the seek distance is
simply the difference between the end of the previous IO and the start of
this IO.

23

11.1 Seeks Per Second

When the -m option provides a name, Q2Q and/or D2D seeks will trigger btt
to output seeks-per-second information. The first column will contain a time
value (seconds), and the second column will indicate the number of seeks per
second at that point.

When there is only a single data point within a 1-second window, btt will
just output the time value for the point, and the value 1.0 in the second column.
If there is no perceived difference in the times present for the current sample,
then the second columns value is the number of seeks present at that time.

Otherwise, if α and Ω are the first and last times seen within a 1-second
window, and ν are the number of seeks seen in that time frame, then:

column 1 Midway point in time for this span, or: α+ (Ω− α)/2

column 2 Average seeks per second over this span, or: ν/(Ω− α)

Figure 6 shows a simple pair of graphs generated from -m output:

0

1000

2000

3000

4000

5000

Kernel Make Runs: BTRFS (0.14)
10 passes (untar, make config+all+clean), Linux 2.6.25.4, SATA drive

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Runtime (minutes)

0

1000

2000

3000

4000

5000

 S
ee

ks
 p

er
 S

ec
on

d

Figure 6: Seeks-per-second Chart

24

12 Command Line

Usage: btt 2.09

[-a | --seek-absolute]

[-A | --all-data]

[-B <output name> | --dump-blocknos=<output name>]

[-d <seconds> | --range-delta=<seconds>]

[-D <dev;...> | --devices=<dev;...>]

[-e <exe,...> | --exes=<exe,...>]

[-h | --help]

[-i <input name> | --input-file=<input name>]

[-I <output name> | --iostat=<output name>]

[-l <output name> | --d2c-latencies=<output name>]

[-L <freq> | --periodic-latencies=<freq>]

[-m <output name> | --seeks-per-second=<output name>]

[-M <dev map> | --dev-maps=<dev map>

[-o <output name> | --output-file=<output name>]

[-p <output name> | --per-io-dump=<output name>]

[-P <output name> | --per-io-trees=<output name>]

[-q <output name> | --q2c-latencies=<output name>]

[-Q <output name> | --active-queue-depth=<output name>]

[-r | --no-remaps]

[-s <output name> | --seeks=<output name>]

[-S <interval> | --iostat-interval=<interval>]

[-t <sec> | --time-start=<sec>]

[-T <sec> | --time-end=<sec>]

[-u <output name> | --unplug-hist=<output name>]

[-V | --version]

[-v | --verbose]

[-X | --easy-parse-avgs]

[-z <output name> | --q2d-latencies=<output name>]

[-Z | --do-active

12.1 --seek-absolute/-a

When specified on the command line, this directs btt to calculate seek distances
based solely upon the ending block address of one IO, and the start of the next.
By default btt uses the concept of the closeness to either the beginning or end
of the previous IO. See section 11 for more details about seek distances.

12.2 --all-data/-A

Normally btt will not print out verbose information concerning per-process and
per-device data (as outlined in section 3). If you desire that level of detail you
can specify this option.

25

12.3 --dump-blocknos/-B

This option will output absolute block numbers to three files prefixed by the
specified output name:

prefix device r.dat All read block numbers are output, first column is time
(seconds), second is the block number, and the third column is the ending
block number.

prefix device w.dat All write block numbers are output, first column is time
(seconds), second is the block number, and the third column is the ending
block number.

prefix device c.dat All block numbers (read and write) are output, first col-
umn is time (seconds), second is the block number, and the third column
is the ending block number.

12.4 --range-delta/-d

Section 5 discussed how btt outputs a file containing Q and C activity, the
notion of active traces simply means that there are Q or C traces occurring
within a certain period of each other. The default values is 0.1 seconds; with
this option allowing one to change that granularity. The smaller the value, the
more data points provided.

12.5 --devices/-D

Normally, btt will produce data for all devices detected in the traces parsed.
With this option, one can reduce the analysis to one or more devices provided
in the string passed to this option. The device identifiers are the major and
minor number of each device, and each device identifier is separated by a colon
(:). A valid specifier for devices 8,0 and 8,8 would then be: "8,0:8,8".

12.6 --exes/-e

Likewise, btt will produce data for all processes (executables) found in the
traces. With this option, one can specify which processes you want displayed
in the output. The format of the string passed is a list of executable names
separated by commas (,). An example would be "-e mkfs.ext3,mount".

12.7 --help/-h

Prints out the simple help information, as seen at the top of section 12.

12.8 --input-file/-i

Specifies the binary input file that btt will interpret traces in. See section 2 for
information concerning binary trace files.

26

12.9 --iostat/-I

This option triggers btt to generate iostat-like output to the file specified. Refer
to section 8 for more information on the output produced.

12.10 --d2c-latencies/-l

This option instructs btt to generate the D2C latency file discussed in section 10.

12.11 --periodic-latencies/-L

When given a value greater than 0, this option will create two data files (q2c
& d2c) per device containing a periodic timestamp & average latency over that
period.

12.12 --seeks-per-second-m

Tells btt to output seeks per second information. Each device being measured
can have up to 2 files output: One with Q2Q information and one with D2D seek
information. Information on the output produced can be found in section 11.1.

Note: This requires seek output to be selected – see sec-
tion 11.

12.13 --dev-maps/-M

Internal option, still under construction.

12.14 --output-file/-o

Normally btt sends the statistical output (covered in section 3) to standard
out, if you specify this option this data is redirected to the file specified.

12.15 --per-io-dump/-p

This option tells btt to generate the per IO dump file as discussed in section 9.

12.16 --per-io-tress/-P

The -P option will generate a file that contains a list of all IO ”sequences”
- showing only the Q, D & C operation times. The D & C time values are
separated from the Q time values with a vertical bar.

12.17 --q2c-latencies/-q

This option instructs btt to generate the Q2C latency file discussed in section 10.

27

12.18 --active-queue-depth/-Q

This option tells btt to generate a data file (using the given name as a base)
which contains: A time stamp in the first column, and then the number of active
requests issued to the device driver. (The value is incremented when an issue
is performend, and decremented when a complete is performed.

12.19 --no-remaps/-r

Ignore remap traces; older kernels did not implement the full remap PDU.

12.20 --seeks/-s

This option instructs btt to generate the seek data file discussed in section 11.

12.21 --iostat-interval/-S

The normal iostat command allows one to specify the snapshot interval, like-
wise, btt allows one to specify how many seconds between its generation of
snapshots of the data via this option. Details about the iostat-like capabilities
of btt may be found in section 8.

12.22 --time-start/-t and --time-end/T

This btt capability is still under construction, results are not always
consistent at this point in time.

These options allow one to dictate to btt when to start and stop parsing of
trace data in terms of seconds since the start of the run. The trace chosen will
be between the start time (or 0.0 if not specified) and end time (or the end of
the run) specified.

12.23 --unplug-hist/-u

This option instructs btt to generate a data file containing histogram informa-
tion for unplug traces on a per device basis. It shows how many times an unplug
was hit with a specified number of IOs released. There are 21 output values
into the file, as follows:

X value Representing Counts
0 0. . . 4
1 5. . . 9
2 10. . . 14
.
19 95. . . 99
20 100+

28

The file name(s) generated use the text string passed as an argument for
the prefix, followed by the device identifier in major,minor form, with a .dat

extension (as an example, with -u up hist specified on the command line:
up hist 008,032.dat.

12.24 --version/-V

Prints out the btt version, and exits.

12.25 --verbose/-v

While btt is processing data, it will put out periodic (1-second granularity)
values describing the progress it is making through the input trace stream. The
value describes how many traces have been processed. At the end of the run, the
overall number of traces, trace rate (number of thousands of traces per second),
and the real time for trace processing and output are displayed. Example (note:
the interim trace counts are put out with carriage returns, hence, they overwrite
each time):

btt -i bp.bin -o btt -v

Sending range data to bttX.dat

Sending stats data to bttX.avg

287857 t

1414173 t

1691581 t

...

4581291 traces @ 279.7 Ktps

16.379036+0.000005=16.379041

12.26 --easy-parse-avgs/-X

Some of the data produced by default can also be shipped simultaneously to
another file in an easy to parse form. When the -o option is selected (thus
producing a file with a .avg exentsion), and the -X flag is present, then btt will
generate this file.

The format is space-delimited values starting with a 3-character record in-
dicator, then the device information (either major,minor or the device name
when -M is specified), and then a number of fields representing data values. The
following table shows the record identifiers and the fields provided:

29

Record Description
DMI Device Merge Information:

#Q #D Ratio BLKmin BLKavg BLKmax Total
QSK Device Q2Q Seek Information:

NSEEKS MEAN MEDIAN MODE N-MODE mode. . .
DSK Device D2D Seek Information:

NSEEKS MEAN MEDIAN MODE N-MODE mode. . .
PLG Plug Information:

#Plugs #TimerUnplugs %TimeQPlugged
UPG Unplug Information:

IOsPerUnplug IOsPerUnplugTimeout
ARQ Active Requests at Q Information:

AvgReqs@Q

Q2Q Queue-to-Queue times:
Q2G Queue-to-GetRequest times:
S2G Sleep-to-GetRequest times:
G2I GetRequest-to-Insert times:
Q2M Queue-to-Merge times:
I2D Insert-to-Issue times:
M2D Merge-to-Issue times:
D2C Issue-to-Complete times:
Q2C Queue-to-Complete times:

MIN AVG MAX N

A sample output file would look like:

Q2Q 0.000000001 0.003511356 9.700000000 309906

Q2G 0.000000001 0.774586535 805.300000000 106732

S2G 0.000000001 0.072525952 0.370000000 578

G2I 0.000000001 0.000001125 0.010000000 106732

Q2M 0.000000001 0.730763626 751.820000000 204040

I2D 0.000000001 1.270720538 612.880000000 106948

M2D 0.000000001 0.992355230 428.930000000 203114

D2C 0.000000001 0.008681311 137.020000000 307343

Q2C 0.000000001 1.304370794 805.660000000 308921

DMI 8,16 309907 106729 2.903681286 8 182 1024 19504768

QSK 8,16 309907 167200.935561314 0 0 235708

DSK 8,16 106729 433247.436563633 0 0 33974

PLG 8,16 40824 382 0.008881420

UPG 8,16 1.993361748 1.866492147

ARQ 8,16 12.938165321

30

12.27 --q2d-latencies/-z

This option instructs btt to generate the Q2D latency file discussed in sec-
tion 10.

12.28 --q2d-latencies/-Z

This option generates per-device (and total system) data files. Each file contain
a data line which resembles a timing graph: low meaning I/O inactive, high
meaning I/O active. A sample section of two “active” regions would be:

0.000000000 1.0

0.000025733 1.0

0.000025733 1.9

0.000107089 1.9

0.000107089 1.0

0.000107089 1.0

0.005637386 1.0

0.005637386 1.9

0.017323909 1.9

Which shows an active area from 0.000025733 through 0.000107089 followed
by another at 0.005637386 through 0.017323909. Figure 7 shows a sample plot
that can be generated by such data.

31

13 bno plot.py

Included with the distribution is a simple 3D plotting utility based upon the
block numbers output when -B is specified (see section 12.3 for more details
about the -B option). The display will display each IO generated, with the
time (seconds) along the X-axis, the block number (start) along the Y-axis and
the number of blocks transferred in the IO represented along the Z-axis.

The script requires Python9 and gnuplot10, and will enter interactive mode
after the image is produced. In this interactive mode one can enter gnuplot
commands at the ’gnuplot>’ prompt, and/or can change the viewpoint within
the 3D image by left-click-hold and moving the mouse. A sample screen shot
can be seen in figure 8.

9www.python.org
10www.gnuplot.info

Figure 7: Sample graph using data from -Z

32

bno plot.py Command Line Options

$ bno_plot.py --help

bno_plot.py

[-h | --help]

[-K | --keys-below]

[-v | --verbose]

[<file...>]

Utilizes gnuplot to generate a 3D plot of the block number

output from btt. If no <files> are specified, it will

utilize all files generated after btt was run with -B

blknos (meaning: all files of the form blknos*[rw].dat).

The -K option forces bno_plot.py to put the keys below the

graph, typically all keys for input files are put in the

upper right corner of the graph. If the number of devices

exceed 10, then bno_plot.py will automatically push the

keys under the graph.

To exit the plotter, enter ’quit’ or ^D at the ’gnuplot> ’

prompt.

33

Figure 8: Sample bno plot.py Screen Shot

34

14 Sample btt Output

Here is a complete output file from a btt run, illustrating a lot of the capabilities
of btt.

==================== All Devices ====================

ALL MIN AVG MAX N

--------------- ------------- ------------- ------------- -----------

Q2Qdm 0.000001260 0.000078915 14.504199709 491531

Q2Adm 0.000000398 0.001184212 43.228889856 491566

Q2Q 0.000000455 0.000009032 1.811181609 491566

Q2G 0.000000466 0.002396857 0.203392940 8756

G2I 0.000000142 0.000000461 0.000096257 8756

Q2M 0.000000230 0.000000433 0.000173083 482810

I2D 0.000000999 0.407286973 0.982146009 8756

M2D 0.000001251 0.356512650 0.982143260 482810

D2C 0.000057729 0.037337508 2.011319687 491566

Q2C 0.000060550 0.394797701 2.035625308 491566

==================== Device Overhead ====================

DEV | Q2G G2I Q2M I2D D2C

---------- | --------- --------- --------- --------- ---------

(8, 0) | 0.3104% 0.0004% 0.0003% 58.9079% 41.0914%

(8, 32) | 0.5858% 0.0001% 0.0001% 98.3852% 1.6146%

---------- | --------- --------- --------- --------- ---------

Overall | 0.0957% 0.0000% 0.0010% 16.2534% 83.6500%

35

==================== Device Merge Information ====================

DEV | #Q #D Ratio | BLKmin BLKavg BLKmax Total

---------- | -------- -------- ------- | -------- -------- -------- --------

(8, 0) | 246812 3970 62.2 | 2 497 1024 1974490

(8, 32) | 244754 4786 51.1 | 8 409 488 1958032

---------- | -------- -------- ------- | -------- -------- -------- --------

DEV | #Q #D Ratio | BLKmin BLKavg BLKmax Total

TOTAL | 491566 8756 56.1 | 2 449 1024 3932522

==================== Device Q2Q Seek Information ====================

DEV | NSEEKS MEAN MEDIAN | MODE

---------- | --------------- --------------- --------------- | ---------------

(9, 0) | 491532 2693.5 0 | 0(489746)

(8, 0) | 246812 2682.4 0 | 0(245021)

(8, 32) | 244754 1355.3 0 | 0(243795)

---------- | --------------- --------------- --------------- | ---------------

Overall | NSEEKS MEAN MEDIAN | MODE

Average | 983098 2357.6 0 | 0(978562)

==================== Device D2D Seek Information ====================

DEV | NSEEKS MEAN MEDIAN | MODE

---------- | --------------- --------------- --------------- | ---------------

(8, 0) | 3970 219326.9 0 | 0(2177)

(8, 32) | 4786 69254.5 0 | 0(3828)

---------- | --------------- --------------- --------------- | ---------------

Overall | NSEEKS MEAN MEDIAN | MODE

Average | 8756 137297.8 0 | 0(6005)

36

==================== Plug Information ====================

DEV | # Plugs # Timer Us | % Time Q Plugged

---------- | ---------- ---------- | ----------------

(8, 0) | 1152(137) | 0.107460846%

(8, 32) | 5(0) | 0.000175916%

---------- | ---------- ---------- | ----------------

Overall | # Plugs # Timer Us | % Time Q Plugged

Average | 578(68) | 0.053818381%

==================== Active Requests At Q Information ====================

DEV | Avg Reqs @ Q

---------- | -------------

(8, 0) | 11.1

(8, 32) | 133.0

---------- | -------------

Overall | Avgs Reqs @ Q

Average | 71.8

==================== Q2D Histogram ====================

DEV | <.005 <.010 <.025 <.050 <.075 <.100 <.250 <.500 < 1.0 >=1.0

--------- | ===== ===== ===== ===== ===== ===== ===== ===== ===== =====

(8, 0) | 80.5 3.5 1.0 1.0 0.7 0.6 4.0 5.3 3.4 0.0

(8, 32) | 0.3 0.0 0.3 0.2 0.2 0.2 1.7 2.0 95.2 0.0

========== | ===== ===== ===== ===== ===== ===== ===== ===== ===== =====

AVG | 40.5 1.8 0.6 0.6 0.4 0.4 2.8 3.7 49.1 0.0

37

