
blktrace User Guide

blktrace: Jens Axboe (jens.axboe@oracle.com)
User Guide: Alan D. Brunelle (Alan.Brunelle@hp.com)

27 May 2008

1 Introduction

blktrace is a block layer IO tracing mechanism which provides detailed informa-
tion about request queue operations up to user space. There are three major
components that are provided:

Kernel patch A patch to the Linux kernel which includes the kernel event
logging interfaces, and patches to areas within the block layer to emit
event traces. If you run a 2.6.17-rc1 or newer kernel, you don’t need to
patch blktrace support as it is already included.

blktrace A utility which transfers event traces from the kernel into either long-
term on-disk storage, or provides direct formatted output (via blkparse).

blkparse A utility which formats events stored in files, or when run in live
mode directly outputs data collected by blktrace.

1.1 blktrace Download Area

The blktrace and blkparse utilities and associated kernel patch are provided as
part of the following git repository:

git://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git bt

1



2 Quick Start Guide

The following sections outline some quick steps towards utilizing blktrace. Some
of the specific instructions below may need to be tailored to your environment.

2.1 Retrieving blktrace

As noted above, the kernel patch along with the blktrace and blkparse utilities
are stored in a git repository. One simple way to get going would be:

% git clone git://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git bt

% cd bt

% git checkout

2.2 Patching and configuring the Linux kernel

A patch for a specific Linux kernel is provided in bt/kernel (where bt is the name
of the directory from the above git sequence). The detailed actual patching
instructions for a Linux kernel is outside the scope of this document, but the
following may be used as a sample template. Note that you may skip this step,
if you kernel is at least 2.6.17-rc1.

As an example, bt/kernel contains blk-trace-2.6.14-rc1-git-G2, download
linux-2.6.13.tar.bz2 and patch-2.6.14-rc1.bz2

% tar xjf linux-2.6.13.tar.bz2

% mv linux-2.6.13 linux-2.6.14-rc1

% cd linux-2.6.14-rc1

% bunzip2 -c ../patch-2.6.14-rc1.bz2 | patch -p1

At this point you may (optionally) remove linux-2.6.13.tar.bz2 and patch-
2.6.14-rc1.bz2.

At this point you should configure the Linux kernel for your specific system –
again, outside the scope of this document – and then enable Support for tracing
block io actions. To do this, run

% make menuconfig or make xconfig, or edit .config, or ...

and navigate through Device Drivers and Block devices and then down to
Support for tracing block io actions and hit Y.

Install the new kernel (and modules. . . ) and reboot.

2.3 Mounting the debugfs file system

blktrace utilizes files under the debug file system, and thus must have the mount
point set up – mounted on the directory /sys/kernel/debug. To do this one may
do either of the following:

1. Manually mount after each boot:

2



% mount -t debugfs debugfs /sys/kernel/debug

2. Add an entry into /etc/fstab, and have it done automatically at each
boot1:

debug /sys/kernel/debug debugfs default 0 0

2.4 Build the tools

To build and install the tools, execute the following sequence (as root):

% cd bt

% make && make install

2.5 blktrace – live

Now to simply watch what is going on for a specific disk (to stop the trace, hit
control-C):

% blktrace -d /dev/sda -o - | blkparse -i -

8,0 3 1 0.000000000 697 G W 223490 + 8 [kjournald]

8,0 3 2 0.000001829 697 P R [kjournald]

8,0 3 3 0.000002197 697 Q W 223490 + 8 [kjournald]

8,0 3 4 0.000005533 697 M W 223498 + 8 [kjournald]

8,0 3 5 0.000008607 697 M W 223506 + 8 [kjournald]

8,0 3 6 0.000011569 697 M W 223514 + 8 [kjournald]

8,0 3 7 0.000014407 697 M W 223522 + 8 [kjournald]

8,0 3 8 0.000017367 697 M W 223530 + 8 [kjournald]

8,0 3 9 0.000020161 697 M W 223538 + 8 [kjournald]

8,0 3 10 0.000024062 697 D W 223490 + 56 [kjournald]

8,0 1 11 0.009507758 0 C W 223490 + 56 [0]

8,0 1 12 0.009538995 697 G W 223546 + 8 [kjournald]

8,0 1 13 0.009540033 697 P R [kjournald]

8,0 1 14 0.009540313 697 Q W 223546 + 8 [kjournald]

8,0 1 15 0.009542980 697 D W 223546 + 8 [kjournald]

8,0 1 16 0.013542170 0 C W 223546 + 8 [0]

...

^C

...

CPU1 (8,0):

Reads Queued: 0, 0KiB Writes Queued: 7, 128KiB

Read Dispatches: 0, 0KiB Write Dispatches: 7, 128KiB

Reads Completed: 0, 0KiB Writes Completed: 11, 168KiB

Read Merges: 0 Write Merges: 25

1Note: after adding the entry to /etc/fstab, you could then mount the directory this time
only by doing: % mount debug

3



IO unplugs: 0 Timer unplugs: 0

...

CPU3 (8,0):

Reads Queued: 0, 0KiB Writes Queued: 1, 28KiB

Read Dispatches: 0, 0KiB Write Dispatches: 1, 28KiB

Reads Completed: 0, 0KiB Writes Completed: 0, 0KiB

Read Merges: 0 Write Merges: 6

IO unplugs: 0 Timer unplugs: 0

Total (8,0):

Reads Queued: 0, 0KiB Writes Queued: 11, 168KiB

Read Dispatches: 0, 0KiB Write Dispatches: 11, 168KiB

Reads Completed: 0, 0KiB Writes Completed: 11, 168KiB

Read Merges: 0 Write Merges: 31

IO unplugs: 0 Timer unplugs: 3

Events (8,0): 89 entries, 0 skips

A btrace script is included in the distribution to ease live tracing of devices.
The above could also be accomplished by issuing:

% btrace /dev/sda

By default, btrace runs the trace in quiet mode so it will not include statistics
when you break the run. Add the -S option to get that dumped as well.

2.6 blktrace – SCSI commands

The previous section showed typical file system io actions, but blktrace can also
show SCSI commands going in and out of the queue as submitted by applications
using the SCSI Generic (sg) interface.

% btrace /dev/cdrom

[...]

3,0 0 25 0.004884107 13528 G R 0 + 0 [inquiry]

3,0 0 26 0.004890361 13528 I R 56 (12 00 00 00 38 ..) [inquiry]

3,0 0 27 0.004891223 13528 P R [inquiry]

3,0 0 28 0.004893250 13528 D R 56 (12 00 00 00 38 ..) [inquiry]

3,0 0 29 0.005344910 0 C R (12 00 00 00 38 ..) [0]

Here we see a program issuing an INQUIRY command to the CDROM de-
vice. The program requested a read of 56 bytes of data, the CDB is included
in parenthesis after the data length. The completion event shows shows that
the command completed successfully. Tracing SCSI commands can be very use-
ful for debugging problems with programs talking directly to the device. An
example of that would be cdrecord burning.

4



2.7 blktrace – post-processing

Another way to run blktrace is to have blktrace save data away for later format-
ting by blkparse. This would be useful if you want to get measurements while
running specific loads.

To do this, one would specify the device (or devices) to be watched. Then
go run you test cases. Stop the trace, and at your leisure utilize blkparse to see
the results.

In this example, devices /dev/sdaa, /dev/sdc and /dev/sdo are used in an
LVM volume called adb3/vol.

% blktrace /dev/sdaa /dev/sdc /dev/sdo &

[1] 9713

%

% mkfs -t ext3 /dev/adb3/vol

mke2fs 1.35 (28-Feb-2004)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

16793600 inodes, 33555456 blocks

1677772 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=4294967296

1025 block groups

32768 blocks per group, 32768 fragments per group

16384 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,

4096000, 7962624, 11239424, 20480000, 23887872

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 27 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

%

% kill -15 9713

Then you could process the events later:

%

% blkparse sdaa sdc sdo > events

% less events

8,32 1 1 0.000000000 9728 G R 384 + 32 [mkfs.ext3]

8,32 1 2 0.000001959 9728 P R [mkfs.ext3]

5



8,32 1 3 0.000002446 9728 Q R 384 + 32 [mkfs.ext3]

8,32 1 4 0.000005110 9728 D R 384 + 32 [mkfs.ext3]

8,32 3 5 0.000200570 0 C R 384 + 32 [0]

8,224 3 1 0.021658989 9728 G R 384 + 32 [mkfs.ext3]

...

65,160 3 163392 41.117070504 0 C W 87469088 + 1376 [0]

8,32 3 163374 41.122683668 0 C W 88168160 + 1376 [0]

65,160 3 163393 41.129952433 0 C W 87905984 + 1376 [0]

65,160 3 163394 41.130049431 0 D W 89129344 + 1376 [swapper]

65,160 3 163395 41.130067135 0 D W 89216704 + 1376 [swapper]

65,160 3 163396 41.130083785 0 D W 89304096 + 1376 [swapper]

65,160 3 163397 41.130099455 0 D W 89391488 + 1376 [swapper]

65,160 3 163398 41.130114732 0 D W 89478848 + 1376 [swapper]

65,160 3 163399 41.130128885 0 D W 89481536 + 64 [swapper]

8,32 3 163375 41.134758196 0 C W 86333152 + 1376 [0]

65,160 3 163400 41.142229726 0 C W 89129344 + 1376 [0]

65,160 3 163401 41.144952314 0 C W 89481536 + 64 [0]

8,32 3 163376 41.147441930 0 C W 88342912 + 1376 [0]

65,160 3 163402 41.155869604 0 C W 89478848 + 1376 [0]

8,32 3 163377 41.159466082 0 C W 86245760 + 1376 [0]

65,160 3 163403 41.166944976 0 C W 89216704 + 1376 [0]

65,160 3 163404 41.178968252 0 C W 89304096 + 1376 [0]

65,160 3 163405 41.191860173 0 C W 89391488 + 1376 [0]

...

Events (sdo): 0 entries, 0 skips

CPU0 (65,160):

Reads Queued: 0, 0KiB Writes Queued: 9, 5,520KiB

Read Dispatches: 0, 0KiB Write Dispatches: 0, 0KiB

Reads Completed: 0, 0KiB Writes Completed: 0, 0KiB

Read Merges: 0 Write Merges: 336

IO unplugs: 0 Timer unplugs: 0

CPU1 (65,160):

Reads Queued: 2,411, 38,576KiB Writes Queued: 769, 425,408KiB

Read Dispatches: 2,407, 38,512KiB Write Dispatches: 118, 61,680KiB

Reads Completed: 0, 0KiB Writes Completed: 0, 0KiB

Read Merges: 0 Write Merges: 25,819

IO unplugs: 0 Timer unplugs: 4

CPU2 (65,160):

Reads Queued: 2, 32KiB Writes Queued: 18, 10,528KiB

Read Dispatches: 2, 32KiB Write Dispatches: 3, 1,344KiB

Reads Completed: 0, 0KiB Writes Completed: 0, 0KiB

Read Merges: 0 Write Merges: 640

IO unplugs: 0 Timer unplugs: 0

CPU3 (65,160):

Reads Queued: 20,572, 329,152KiB Writes Queued: 594, 279,712KiB

6



Read Dispatches: 20,576, 329,216KiB Write Dispatches: 1,474, 740,720KiB

Reads Completed: 22,985, 367,760KiB Writes Completed: 1,390, 721,168KiB

Read Merges: 0 Write Merges: 16,888

IO unplugs: 0 Timer unplugs: 0

Total (65,160):

Reads Queued: 22,985, 367,760KiB Writes Queued: 1,390, 721,168KiB

Read Dispatches: 22,985, 367,760KiB Write Dispatches: 1,595, 803,744KiB

Reads Completed: 22,985, 367,760KiB Writes Completed: 1,390, 721,168KiB

Read Merges: 0 Write Merges: 43,683

IO unplugs: 0 Timer unplugs: 4

...

7



3 blktrace User Guide

The blktrace utility extracts event traces from the kernel (via the relaying
through the debug file system). Some background details concerning the run-
time behaviour of blktrace will help to understand some of the more arcane
command line options:

• blktrace receives data from the kernel in buffers passed up through the
debug file system (relay). Each device being traced has a file created in the
mounted directory for the debugfs, which defaults to /sys/kernel/debug –
this can be overridden with the -r command line argument.

• blktrace defaults to collecting all events that can be traced. To limit the
events being captured, you can specify one or more filter masks via the -a
option.

Alternatively, one may specify the entire mask utilizing a hexadecimal
value that is version-specific. (Requires understanding of the internal rep-
resentation of the filter mask.)

• As noted above, the events are passed up via a series of buffers stored into
debugfs files. The size and number of buffers can be specified via the -b
and -n arguments respectively.

• blktrace stores the extracted data into files stored in the local directory.
The format of the file names is (by default) device.blktrace.cpu, where
device is the base device name (e.g, if we are tracing /dev/sda, the base
device name would be sda); and cpu identifies a CPU for the event stream.

The device portion of the event file name can be changed via the -o option.

• blktrace may also be run concurrently with blkparse to produce live output
– to do this specify -o - for blktrace.

• The default behaviour for blktrace is to run forever until explicitly killed
by the user (via a control-C, or kill utility invocation). There are two
ways to modify this:

1. You may utilize the blktrace utility itself to kill a running trace – via
the -k option.

2. You can specify a run-time duration for blktrace via the -w option –
then blktrace will run for the specified number of seconds, and then
halt.

8



3.1 Command line arguments

Short Long Description

-A hex-mask –set-mask=hex-mask Set filter mask to hex-mask
-a mask –act-mask=mask Add mask to current filter (see below for masks)
-b size –buffer-size=size Specifies buffer size for event extraction (scaled by 210)
-d dev –dev=dev Adds dev as a device to trace
-k –kill Kill on-going trace
-n num-sub –num-sub=num-sub Specifies number of buffers to use
-o file –output=file Prepend file to output file name(s)

This only works when using a single device
or when piping the output via -o -

with multiple devices.
-r rel-path –relay=rel-path Specifies debugfs mount point
-V –version Outputs version
-w seconds –stopwatch=seconds Sets run time to the number of seconds specified
-I devs file –input-devs=devs file Adds devices found in devs file to list of devices to trace.

(One device per line.)

3.1.1 Filter Masks

The following masks may be passed with the -a command line option, multiple
filters may be combined via multiple -a command line options.

barrier barrier attribute
complete completed by driver
fs FS requests
issue issued to driver
pc packet command events
queue queue operations
read read traces
requeue requeue operations
sync synchronous attribute
write write traces
notify notify trace messages

3.1.2 Request types

blktrace disguingishes between two types of block layer requests, file system and
scsi commands. The former are dubbed fs requests, the latter pc requests. File
system requests are normal read/write operations, ie any type of read or write
from a specific disk location at a given size. These requests typically originate
from a user process, but they may also be initiated by the vm flushing dirty data
to disk or the file system syncing a super or journal block to disk. pc requests
are SCSI commands. blktrace sends the command data block as a payload so
that blkparse can decode it.

9



4 blkparse User Guide

The blkparse utility will attempt to combine streams of events for various devices
on various CPUs, and produce a formatted output of the event information. As
with blktrace, some details concerning blkparse will help in understanding the
command line options presented below.

• By default, blkparse expects to run in a post-processing mode – one where
the trace events have been saved by a previous run of blktrace, and blk-
parse is combining event streams and dumping formatted data.

blkparse may be run in a live manner concurrently with blktrace by spec-
ifying -i - to blkparse, and combining it with the live option for blktrace.
An example would be:

% blktrace -d /dev/sda -o - | blkparse -i -

• You can set how many blkparse batches event reads via the -b option, the
default is to handle events in batches of 512.

• If you have saved event traces in blktrace with different output names (via
the -o option to blktrace), you must specify the same input name via the
-i option.

• The format of the output data can be controlled via the -f or -F options
– see section 4.3 for details.

By default, blkparse sends formatted data to standard output. This may
be changed via the -o option, or text output can be disabled via the-O
option. A merged binary stream can be produced using the -d option.

10



4.1 Command line arguments

Short Long Description

-b batch –batch=batch Standard input read batching
-i file –input=file Specifies base name for input files – default is device.blktrace.cpu.

As noted above, specifying -i - runs in live mode with blktrace
(reading data from standard in).

-F typ,fmt –format=typ,fmt Sets output format
-f fmt –format-spec=fmt (See section 4.3 for details.)

The -f form specifies a format for all events

The -F form allows one to specify a format for a specific
event type. The single-character typ field is one of the
action specifiers in section 4.3.2

-m –missing Print missing entries
-h –hash-by-name Hash processes by name, not by PID
-o file –output=file Output file
-O –no-text-output Do not produce text output, used for binary (-d) only
-d file –dump-binary=file Binary output file
-q –quiet Quite mode
-s –per-program-stats Displays data sorted by program
-t –track-ios Display time deltas per IO
-w span –stopwatch=span Display traces for the span specified – where span can be:

end-time – Display traces from time 0 through end-time (in ns)
or
start:end-time – Display traces from time start
through end-time (in ns).

-M –no-msgs Do not add messages to binary output file
-v –verbose More verbose marginal on marginal errors
-V –version Display version

11



4.2 Trace actions

C – complete A previously issued request has been completed. The output
will detail the sector and size of that request, as well as the success or
failure of it.

D – issued A request that previously resided on the block layer queue or in
the io scheduler has been sent to the driver.

I – inserted A request is being sent to the io scheduler for addition to the
internal queue and later service by the driver. The request is fully formed
at this time.

Q – queued This notes intent to queue io at the given location. No real re-
quests exists yet.

B – bounced The data pages attached to this bio are not reachable by the
hardware and must be bounced to a lower memory location. This causes
a big slowdown in io performance, since the data must be copied to/from
kernel buffers. Usually this can be fixed with using better hardware -
either a better io controller, or a platform with an IOMMU.

m – message Text message generated via kernel call to blk add trace msg.

M – back merge A previously inserted request exists that ends on the bound-
ary of where this io begins, so the io scheduler can merge them together.

F – front merge Same as the back merge, except this io ends where a previ-
ously inserted requests starts.

G – get request To send any type of request to a block device, a struct request
container must be allocated first.

S – sleep No available request structures were available, so the issuer has to
wait for one to be freed.

P – plug When io is queued to a previously empty block device queue, Linux
will plug the queue in anticipation of future ios being added before this
data is needed.

U – unplug Some request data already queued in the device, start sending
requests to the driver. This may happen automatically if a timeout period
has passed (see next entry) or if a number of requests have been added to
the queue.

T – unplug due to timer If nobody requests the io that was queued after
plugging the queue, Linux will automatically unplug it after a defined
period has passed.

12



X – split On raid or device mapper setups, an incoming io may straddle a
device or internal zone and needs to be chopped up into smaller pieces
for service. This may indicate a performance problem due to a bad setup
of that raid/dm device, but may also just be part of normal boundary
conditions. dm is notably bad at this and will clone lots of io.

A – remap For stacked devices, incoming io is remapped to device below it in
the io stack. The remap action details what exactly is being remapped to
what.

4.3 Output Description and Formatting

The output from blkparse can be tailored for specific use - in particular, to ease
parsing of output, and/or limit output fields to those the user wants to see. The
data for fields which can be output include:

Field Description
Specifier

a Action, a (small) string (1 or 2 characters) – see table below for more details
c CPU id
C Command
d RWBS field, a (small) string (1-3 characters) – see section below for more details
D 7-character string containing the major and minor numbers of the event’s device

(separated by a comma).
e Error value
m Minor number of event’s device.
M Major number of event’s device.
n Number of blocks
N Number of bytes
p Process ID
P Display packet data – series of hexadecimal values
s Sequence numbers
S Sector number
t Time stamp (nanoseconds)
T Time stamp (seconds)
u Elapsed value in microseconds (-t command line option)
U Payload unsigned integer

Note that the user can optionally specify field display width, and optionally
a left-aligned specifier. These precede field specifiers, with a ’%’ character,
followed by the optional left-alignment specifer (-) followed by the width (a
decimal number) and then the field.

Thus, to specify the command in a 12-character field that is left aligned:

-f "%-12C"

13



4.3.1 Action Table

The following table shows the various actions which may be output.
Act Description

A IO was remapped to a different device
B IO bounced
C IO completion
D IO issued to driver
F IO front merged with request on queue
G Get request
I IO inserted onto request queue
M IO back merged with request on queue
P Plug request
Q IO handled by request queue code
S Sleep request
T Unplug due to timeout
U Unplug request
X Split

4.3.2 RWBS Description

This is a small string containing at least one character (’R’ for read, ’W’ for
write, or ’D’ for block discard operation), and optionally either a ’B’ (for barrier
operations) or ’S’ (for synchronous operations).

4.3.3 Default output

The standard header (or initial fields displayed) include:

"%D %2c %8s %5T.%9t %5p %2a %3d "

Breaking this down:

%D Displays the event’s device major/minor as: %3d,%-3d.

%2c CPU ID (2-character field).

%8s Sequence number

%5T.%9t 5-charcter field for the seconds portion of the time stamp and a
9-character field for the nanoseconds in the time stamp.

%5p 5-character field for the process ID.

%2a 2-character field for one of the actions.

%3d 3-character field for the RWBS data.

Seeing this in action:

14



8,0 3 1 0.000000000 697 G W 223490 + 8 [kjournald]

The header is the data in this line up to the 223490 (starting block).
The default output for all event types includes this header.

Default output per action

C – complete If a payload is present, this is presented between parenthesis
following the header, followed by the error value.

If no payload is present, the sector and number of blocks are presented
(with an intervening plus (+) character). If the -t option was specified,
then the elapsed time is presented. In either case, it is followed by the
error value for the completion.

D – issued

I – inserted

Q – queued

B – bounced If a payload is present, the number of payload bytes is output,
followed by the payload in hexadecimal between parenthesis.

If no payload is present, the sector and number of blocks are presented
(with an intervening plus (+) character). If the -t option was specified,
then the elapsed time is presented (in parenthesis). In either case, it is
followed by the command associated with the event (surrounded by square
brackets).

M – back merge

F – front merge

G – get request

S – sleep The starting sector and number of blocks is output (with an inter-
vening plus (+) character), followed by the command associated with the
event (surrounded by square brackets).

P – plug The command associated with the event (surrounded by square brack-
ets) is output.

U – unplug

T – unplug due to timer The command associated with the event (surrounded
by square brackets) is output, followed by the number of requests out-
standing.

X – split The original starting sector followed by the new sector (separated by
a slash (/) is output, followed by the command associated with the event
(surrounded by square brackets).

15



A – remap Sector and length is output, along with the original device and
sector offset.

m – message The supplied message is appended to the end of the standard
header.

16



Appendix: blktrace Kernel Guide

The blktrace facility provides an efficient event transfer mechanism which sup-
plies block IO layer state transition data via the relay filesystem. This section
provides some details as to the interfaces blktrace utilizes in the kernel to effect
this. It is good background data to help understand some of the outputs and
command-line options above.

4.4 blktrace.h Definitions

Files which include < linux/blktrace.h > are supplied with the following defi-
nitions:

4.4.1 Trace Action Specifiers

BLK TA QUEUE (RQ) Command queued to request queue.
(BIO) Command queued by elevator.

BLK TA BACKMERGE Back merging elevator operation
BLK TA FRONTMERGE Front merging elevator operation
BLK TA GETRQ Free request retrieved.
BLK TA SLEEPRQ No requests available, device unplugged.
BLK TA REQUEUE Request requeued.
BLK TA ISSUE Command set to driver for request queue.
BLK TA COMPLETE Command completed by driver.
BLK TA PLUG Device is plugged
BLK TA UNPLUG IO Unplug device as IO is made available.
BLK TA UNPLUG TIMER Unplug device after timer expired.
BLK TA INSERT Insert request into queue.
BLK TA SPLIT BIO split into 2 or more requests.
BLK TA BOUNCE BIO was bounced
BLK TA REMAP BIO was remapped

4.5 blktrace.h Routines

Files which include < linux/blktrace.h > are supplied with the following kernel
routine invocable interfaces:

blk add trace rq(struct request queue *q, struct request queue *rq, u32 what)
Adds a trace event describing the state change of the passed in request queue.
The what parameter describes the change in the request queue state,
and is one of the request queue action specifiers – BLK TA QUEUE,
BLK TA REQUEUE, BLK TA ISSUE, or BLK TA COMPLETE.

blk add trace bio(struct request queue *q, struct bio *bio, u32 what)
Adds a trace event for the BIO passed in. The what parameter describes
the action being performed on the BIO, and is one of BLK TA BACKMERGE,
BLK TA FRONTMERGE, or BLK TA QUEUE.

17



blk add trace generic(struct request queue *q, struct bio *bio, int rw, u32 what)
Adds a generic trace event – not one of the request queue or BIO traces.
The what parameter describes the action being performed on the BIO (if
bio is non-NULL), and is one of BLK TA PLUG, BLK TA GETRQ or
BLK TA SLEEPRQ.

blk add trace pdu int(struct request queue *q, u32 what, u32 pdu) Adds
a trace with some payload data – in this case, an unsigned 32-bit entity
(the pdu parameter). The what parameter describes the nature of the pay-
load, and is one of BLK TA UNPLUG IO or BLK TA UNPLUG TIMER.

blk add trace remap(struct request queue *q, struct bio *bio, dev t dev, sector t sector)
Adds a trace with a remap event. dev and sector denote the original device
this bio was mapped from.

blk add trace msg(struct request queue *q, char *fmt, ...) Adds a for-
matted message to the output stream. The total message size can not ex-
ceed BLK TN MSG MSG characters (currently 1024). Standard format
conversions are supported (as supplied by vscnprintf.

18


